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Every attempt to employ mathematical methods in the study of chemi-
cal questions must be considered profoundly irrational and contrary to the
spirit of chemistry. If mathematical analysis should ever hold a prominent
place in chemistry — an aberration which is happily almost impossible — it
would occasion a rapid and widespread degeneration of that science.

A. Comte

Simple reflection as well as experience agree in telling us that it is
hopelessly difficult to hit upon correct conceptions of Nature by mere guess-
work. Rather, these always grow slowly out of isolatedf lucky ideas through
a process of adaptation. Therefore epistemology Tightly opposes the many
frivolous instant theoreticians Hypothesenschmiede who hope to find with
little effort a hypothesis explaining all of Nature, and it also opposes the
metaphysical and dogmatic derivation of atomism.

L. Boltzmann

The miracle of the appropriateness of the language of mathematics for
the formulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.

E. Wigner

Why do you want to know ?
P.A.M. Dirac
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Foreword

The subject of our round table was “Physics and Mathematics”. There were
many proposals to make the title sharper but it seemed better to leave the
discussion open. As well known, relations between physics and mathematics have
been important for both sides all along centuries and they have again proved to
be very fruitful in recent years. We were very pleased to have with us in this
Congress many of the great scientists involved in these developments. On the
other hand, it is considered by some mathematicians and physicists, in particular
today, that these relations are not essential and can even be dangerous: physics
would introduce a lack of rigour in mathematics, mathematics would sterilize
true research in physics,...

Our friend and great scientist Joel Lebowitz has agreed to organize this round
table, has done a very important work for its preparation and has conducted the
debate in a very pleasant and efficient way. You will find here his comments
and preliminary contributions from some panelists and other scientists he has
consulted. His main focus was how, today, mathematicians and/or mathematical
physicists can best use their talents for improving the human understanding of
nature. The relevance of (theoretical or mathematical) physics to the evolution
of mathematics is a second subject of basic interest which he preferred to leave
out in view of recent related discussions on the subject, in particular in the
paper by A. Jaffe and F. Quinn entitled “Theoretical Mathematics: toward a
cultural synthesis of mathematics and theoretical physics”, and responses of
some scientists in a recent bulletin of the AMS (April 1994). These documents,
more oriented towards problems in pure mathematics (nature of mathematical
research and proofs, heuristic ideas versus rigour, ...), were made available to
our participants during the Congress.

The general organization at the UNESCO made possible the participation of
the audience.

Many thanks to Joel Lebowitz, to our panelists and to all our participants,

Daniel Iagolnitzer

P.S.: The contributions presented below by Joel Lebowitz are sometimes a list of open problems,
in accordance with one aspect of his initial request.
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Joel Lebowitz, Rutgers University

I present here excerpts from the written material I received from the panelists
and others in response to my request which read in part as follows:

I believe that the Round Table should focus on the question of how the par-
ticipants in this conference and mathematical physicists in general could best use
their talents to advance the human understanding of nature. This charge is para-
phrased from Thurston’s article in the April Bulletin of the AMS. The extensive
discussions there are the reasons I am deliberately leaving out contributions of
mathematical physics to mathematics.

I then cited some examples, from among those with which I have some fa-
miliarity, where mathematical physics did contribute to our understanding of
nature: a) The notion of the thermodynamic limit for phase transitions and the
related Gibbs formalism, including its applications to dynamical systems (e.g.
Markov partitions) and to field theory. b) The mathematical discovery of solitons
and the apparently deep relationships between integrable systems, solvable sta-
tistical mechanical models, conformal field theory and critical point universality.
c¢) Generic complexity of nonlinear dynamical systems: sensitive dependence on
initial conaitions and parameters, strange attractors, period doublings, universal
routes to turbulence, etc.

Other examples abound and each reader will have her or his favorites. Xhat
is important, in my opinion, is for mathematical physicists not to get seduced by
their facility with manipulation of symbols and, in the words of J.T. Schwartz [1]
“to elaborate upon any idea, however absurd; to dress scientific brillancies and
scientific absurdities alike in the impressive uniform of formulae and theorems.
Unfortunately however, an absurdity in uniform is far more persuasive than an
absurdity unclad. The very fact that a theory appears in mathematical form,
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that, for instance, a theory has provided the occasion for the application of a
fixed-point theorem, or of a result about difference equations, somehow makes
us more ready to take it seriously. And the mathematical-intellectual effort of
applying the theorem fixes in us the particular point of view of the theory with
which we deal, making us blind to whatever appears neither as a dependent
or as an independent parameter in its mathematical formulation. The result,
perhaps most common in the social sciences, is bad theory with a mathematical
passport”. Schwartz then goes on to quote Keynes’ book General Theory, “Too
large a proportion of recent “mathematical” economics are mere concoctions, as
imprecise as the initial assumptions they rest on, which allow the author to lose
sight of the complexities and interdependencies of the real world in a maze of
pretentious and unhelpful symbols”.

I have italicized the word economics in the quote so you, the reader, can
substitute your own favorite example. These too abound.

Let me conclude by thanking the panelists, the respondents, and most espe-
cially Daniel Iagolnitzer for his very hard work in organizing a very successful
meeting. Not only were the official lectures informative and interesting, but,
equally important, there was a very good atmosphere in which many private
scientific and social interactions took place.

[1] The Pernicious Influence of Mathematics on Science, J.T. Schwartz, Proceed-
ing of the 1960 International Congress on “Logic, Methodology and Philosophy
of Science”, Stanford University Press, 1962.

E. Brézin, ENS

The world, even the world of science, is full of ayatollahs who promote easily
their personal beliefs to the rank of absolute truths; they decide without blinking,
what is physics and non-physics, or mathematics and non-mathematics. As far
as I am concerned I am happy that the castle of science has many rooms. Clearly
Ilive in a non-mathematical wing of this palace, although no matter where you
stand, you are always the mathematical physicist of someone else. This leads me
to wonder whether I have been invited to this round table in order to demonstrate
ad absurdum how physicists may be blind to the achievements of mathematical
physics. I am certainly short-sighted but I don’t feel blind. Many important and
deep physical questions in my field have been settled by mathematical physics.
I am sure that you all have zillions of examples that come to your mind. Let
me mention simply some ancient facts concerning phase transitions - ancient
otherwise I am bound to offend 9/10 of this distinguished audience:

- do the principles of statistical mechanics, set up by Boltzmann and Gibbs,
allow for a phase transition ? The question was debated until Peierls proved that
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the Ising model has a spontaneous magnetization at low enough temperatures.
- the existence of a critical point, non-classical indices in statistical mechan-
ics 7 This of course was settled by Onsager’s solution.
- the Mermin-Wagner theorem...

The modern history of mathematical physics has been particularly produc-
tive in this area, and more is needed (for instance to stop various rear guard
skirmishes).

However some of the triumphs of science, of theoretical physics, struck me as
being non-mathematical in their intimate structure. One often considers theo-
retical physics as a conjectural stage waiting for mathematical proofs, very much
like conjectures and proofs in mathematics, and I disagree with this view. I would
like to illustrate my point on the example of QED, one of the most beautiful
and precise constructions ever achieved by human mind.

Dyson was the first to point out that we were lucky that the fine structure
constant was so small, not simply because we could then limit ourselves to a
few Feynman diagrams, but also because otherwise we would have to supple-
ment the divergent perturbation series with non-perturbative information. One
would think that this is where mathematical physics comes into play, but science
has chosen a different path. At the time it was believed that a renormalizable
theory was required because QED would apply to all distances from the largest
down to the smallest in the universe. After Wilson’s work it because manifest
that renormalizability was simply a property of effective theories, valid at large
distances, whatever one dos not know or consider at short distances. Thus QED
became an effective theory. Furthermore the renormalization group arguments
led to the strong likelihood that non asymptotically free theories were in fact
free. Even if one ignores this triviality, 't Hooft’s renormalons would probably
kill any attempt to make sense of this theory.

QED does not seem to be mathematically sound then. The most precise the-
ory ever invented, presumably does not make sense, although it is as precise as we
need ! Is QCD a consistent theory without IR cut-off ? The answer is unknown.
May be there is no consistent quantum field theory of anything and still QED
and QCD are treasures of mankind. Therefore, I am connecting here with the
concepts well argumented in Jack Schwartz article, I regard theoretical physics
and mathematical physics as two fields with different goals and perspectives in
spite of their strong mutual influence and their innumerable crossed links.

Carlo Cerciganni, Milan

In the area of kinetic theory, where my main interests lie I see the following

possible developments:
1) Derivation of fluid dynamics from the Newton equations. Although one
might expect that Newton dynamics should yield, under the a suitable scaling,
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the Euler equations, our ignorance of the long time behavior of the Hamiltonian
systems is such that, at the moment, we are quite far from a rigorous derivation
of the equations of hydrodinamics from the basic laws of Classical Mechanics.
Thanks to the work of Olla, Varadhan and Yau, however, the hydrodynamics of
a class of Hamiltonian systems can be derived if we assume that some ergodic
properties are satisfied, at least as far as a smooth solution of the Euler equations
exists. This is an important connection between ergodic properties and derivation
of macroscopic equations that should be pursued.

2) It may be worth to underline how different is the hydrodynamic behavior
of a gas obeying the Boltzmann equation and thus the state law of perfect gases,
from the behavior arising from a particle system describing a real gas and thus
a more complicated state law, including the effects of the interaction potential
between molecules. In other words, as a consequence of the Boltzmann-Grad
limit, the local equilibrium of a Boltzmann gas is that of a free gas, while, in
general, the local equilibrium of a gas is a Gibbs state for an interacting particle
system. Although the latter is the local equilibrium taking place in real fluids,
the mathematical analysis of the hydrodynamics arising from the Boltzmann
equation is technically easier and has produced more results. Even here, however,
more work should be done. One can follow two paths: a) use the solutions close
to equilibrium for which we have powerful estimates. This is a path followed by
De Masi, Esposito and Lebowitz, and Esposito, Lebowitz and Marra: it produces
interesting, almost explicit results, but has the disadvantage that the work to
be done in order to obtain the necessary estimates becomes cumbersome for
problems with nontrivial geometry, because of the difficulty of controlling the
solution inside boundary layers; b) try to use the more abstract approach in L!
by DiPerna and Lions as attempted (with only partial success) by Bardos, Golse
and Levermore; here the difficulty lies in the rather modest information on the
behavior of the solution.

3) Validity of the Boltzmann equation: Lanford’s short time proof uses esti-
mates of the L™ type. If one could work in L' a global prove could be obtained,
but something is missing (the difficulties are of the type of 2b) above).

4) Due to the singularity of the interaction kernel, the validity of the Vlasov-
Poisson equation has not been established as yet and the mere existence and
uniqueness of smooth solutions in dimension 3 has only recently been achieved.

5) The Enskog equation is known to describe well a dense gas of hard spheres,
but it is not exact; can we explain why it is so good? Or can we obtain something
better?

Sergio Doplicher, Roma

How can Mathematical Physicists best advance human understanding of Na-
ture? To your big question I propose as a tentative answer to commandments:
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1) Though shall be Physically motivated

2) Though shall be Mathematically precise
plus if possible

3) Thy method shall be of interest to Mathematics per se.

Not everybody cares of 2) but most pretend they obey 1). I propose a cri-
terion: The problem should admit a faithful translation in words which do not
depend on a specific formalism and yet sounds physically interesting.

I do believe that the Operator Algebraic Approach to Quantum Field Theory
and Statistical Mechanics — happily named Local Quantum Physics by Rudolf
Haag - is rich of big problems in line with those principles. Each big problem
contains a lot of smaller ones. Here are some of the big ones (details may be
found in the volume in memory of Hoegh-Krohn, Albeverio et al. eds.; for the
general frame see Rudolf Haag’s book Local Quantum Physics).

What is the most general notion of statistics compatible with the principle
of Locality in presence of massless particles? What is its stability against per-
turbations of the Dynamics? Is stability expressed by an index theorem relating
statistics to deformation invariants?

How is the existence of Topological Charges encoded in the algebraic struc-
ture of the local observables?

What distinguishes Gauge Theories at the level of Local Observables? (Rudolf
Haag's long standing question).

Is there a strict Quantum Noether Theorem providing conserved current
Wightman fields out of the local algebras of observables? Can we characterize
theories where the local charge and energy momentum density fields generate
the local observables?

These problems, and others in this line, might stimulate physical insight
in QFT as well as mathematical research on inclusions of factors, structure of
endomorphisms of Operator Algebras, actions of categories on operator Algebras
and their deformations, crossed products, etc.

Jim Glimm, Stony Brook

1. Stochastic variability occurs in nature due to causes which are not known,
or which while known, may be too detailed in their specification to be useful
in a practical sense. Stochastic variability is also used to model incomplete, or
missing data.

Processes occuring in nature are usually spatially dependent; the relevant
stochastic processes are thus random fields. From this point of view, spatial
stochastic processes are nearly as ubiquitous as are partial differential equations
as a model of nature. The normal model should be the stochastic partial differ-
ential equation. Here I do not refer to the somewhat well developed theory of
spatially correlated forcing terms added to partial differential equations, giving
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a coupling to a Wiener process or the like, but coupling, often in the coefficiens
of the derivatives, to a fully spatially dependent random field. The single major
factor most strongly limiting the use of this approach is a lack of understanding
of the relevant theory (beyond the level of gaussian processes and linear par-
tial differential equations), and a lack of methods for the effective approximate
solution of these equations.

2. Rate dependent, metastable, and nonequilibrium processes are not under-
stood at a level adequate for applications.

3. There are many important problems, both large and small, concerning
fluid instabilities.

4. Turbulence presents many open problems, and is one of the major chal-
lenges to physics of this century. Practical computations will be possible within a
few years, and efforts to use them, especially in cases which are only marginally
computable, will create both a need and an opportunity for an increased theo-
retical effort.

5. Multi-length scale theories, or the effective coupling of theories on distinct
length scales are usually very challenging. Often the length scales, while sepa-
rated, are not infinitely separated, as is required in theories of homogenization.
As an example problem, what is the influence of impurities, dislocations and
vacancies on continuum level properties such as material strength?

Jim Hartle, Santa Barbara

The outstanding mathematical physics problem in the classical theory of
relativity is cosmic censorship. We know from the work of Penrose, Hawking
and Geroch that smooth initial data for the Eintstein equation often evolve
singularities. Cosmic censorship is the idea that all such singularities that arise in
gravitational collapse are hidden in black holes. There are various mathematical
formulations (one problem is to get a sufficiently precice formulation of the
conjecture) which boil down to understanding the global evolution of this non-
linear set of differential equations. It is an important problem because one can'’t
make predictions past singularities, but if hidden inside black holes we would
never encounter this problem classically. Put differently if only black holes can
evolve in a gravitational collapse that passes a certain stage, the black hole
endstate of stellar evolution is one of a limited class of geometries independent
of how the collapse started. and this leads to definite predictions in astrophysics.
The cosmic censorship conjecture is an outstanding but tough problem. Someone
in mathematical physics should solve it.
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Arhur Jaffe, Harvard

I personally take a broad and inclusive view of mathematical physics. In fact
for some twenty years, I have advocated (perhaps somewhat in jest) that we use
the inclusive symbol

MUd in place of the exclusive symbol Mng

as the trademark of our Association. This has never proved popular. But as I see
it, there have evolved at least four components to mathematical physics which
illustrate the development of this synergy:

— 1. The use of ideas from mathematics in shedding new light on the existing
principles of physics, either from a conceptual or from a quantitative point
of view.

— 2. The use of ideas from mathematics in discovering new “laws of physics.”

— 3. The use of ideas from physics in shedding new light on existing mathe-
matical structures.

— 4. The use of ideas from physics in discovering new domains in mathematics.

Each of these topics plays some role in our Congress. However, our success
in directions 2 and 4 is certainly more modest than our success in directions 1
and 3. In some cases it is difficult to draw a clear-cut distinction between these
two sets of components. In fact, we are lucky when it is possible to progress in
directions 2 and 4, and when we make major progress there, historians like to
speak of a revolution. In any case, many of us strive to understand these deep
and lofty goals.

In my own country, the United States, and in many other countries, our
governments would like to direct us toward another, more mundane component:

— 5. The use of ideas from physics or from mathematics to benefit “economic
competitiveness.”

Here too, one might subdivide this component into conceptual understanding on
the one hand (such as the mathematical model of Black and Sholes for pricing of
derivative securities in financial markets) or invention on the other: the formula-
tion of new algorithms or materials (e.g. personal computers) which might revo-
lutionize technology or change our way of life. As above, the boundary between
these domains is not sharp, and it remains open to opinion and interpretation.
I will not pursue this strand, which we might characterize as “applied” math-
ematical physics. Rather I will restrict the remainder of my comments to the
first four stands characterizing “fundamental” mathematical physics. In fact, I
believe that a case can be made that most of the profound applied directions
arise after earlier fundamental progress’.

We have lived through an extraordinary 20-year period of development of
fundamental mathematics and physics. Much of this development has drawn
from one subject to understand the other. (Parenthetically this time-scale also
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coincides both with the existence of the Congresses on Mathematical Physics,
and also the time-scale for the original planning of the existence of our Associa-
tion. I attribute this to the perception among the leaders of the subject twenty
years ago that something exciting was taking place.)

Not only have concepts from diverse fields been united: statistical physics,
quantum field theory, and functional integration; gauge theory and geometry;
index theory and knot invariants, etc. But also new phenomena have been rec-
ognized and new areas have emerged whose signifigance we only partially un-
derstand — both for mathematics and for physics: such as non-commutative
geometry; mirror symmetry; new invariants of manifolds; and the general notion
of deformation quantization.

Over the past twenty years, there is no question that the ideas from physics
have led to far greater invention of new mathematics, than the ideas from math-
ematics have been in discovering new laws of physics. But this just underscores
the opportunities for future progress in the other direction! We await a new
understanding of the quantum nature of the world.

There has been great publicity and recognition attached to the progress made
in geometry, in representation theory, and in deformation theory due to this
interaction. But one should not ignore the substantial deep progress in analysis
and in probability theory, which unfortunately is more difficult to understand
because of its delicate dependence on subtle notions of continuity.

On the other hand, I do not claim that physics and mathematics are the
same. Quite to the contrary, they have evolved from different cultures and they
each have a distinctive set of values of their own, suited for their different realms
of universality. Both subjects are based on intuition, some natural and some
acquired, which form our understanding. On the one hand, physics describes
the natural world. Hence physicists appeal to observation in order to verify the
validity of a physical theory. On the other hand, although much of mathematics
arises from the natural world, mathematics has no analogous testing ground.
Mathematicians appeal to their own set of values, namely mathematical proof,
to justify the validity of a mathematical theory.

In the past I have written on this at length from several points of view:
for example my essay from the 1984 David Report! and a recent paper in col-
laboration with Frank Quinn?. The latter essay is directed especially toward
mathematical community, and was published in a mathematics journal. In fact
this paper evoked extended discussion®. I take this opportunity to point out that
much of the discussion of our paper eluded the main point, which is our plea
for “Truth in Advertising.” When announcing results of a mathematical nature,
claim a theorem when your proof meets the mathematics community standards

! See Notices Amer. Math. Soc., (1984) Vol. 31, 589-608; or SIAM Review, (1984) Vol.
26, 473-500.

2 Theoretical Mathematics: Toward a Cultural Synthesis of Matheamtics and Theo-
retical Physics, Bull. Amer. Math. Soc., (1993) Vol. 29, 1-13.

3 Scientific American, Culture Clash, August 1993, page 14; Bull. Amer. Math. Soc.,
(1994) Vol. 30, 159-211.
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for a proof. Otherwise make a conjecture with a detailed outline for support.
Physics, on the other hand, has completely different standards.

There is no question that the interaction between mathematics and physics
will change radically over the next 20 years too. In fact, I believe that the mode
of electronic communication of science will change the way we work, the way
we interact, and the way we view things. They will change to such an extent
that predictions we make today will inevitably be wrong twenty years from now.
Thus I will not try that. But I do hope that this evolution will preserve the
positive experiences of being a mathematician, of being a physicist, or of being a
mathematical physicist, so that it remains attractive to the brightest and most
capable students tomorrow.

R. Newton, Indiana

I think the round table should address itself not only to such down-to-earth
questions as “what problems ought to be attacked with high priority”, but also
to more general philosophical questions: Why is mathematics so “unreasonably
effective” in the natural sciences (as Wigner put it)? Is Poincare’s analogy cor-
rect, according to which science is a library, in which the experiments write and
contribute the books, and the mathematical physicists furnish the index? Why
is it that almost all mathematical structures, invented for their own sake, even-
tually turn out to be of use in physics? Can mathematics be expected to tell us
why “God had no choice in the way He constructed the world”?

Adrian Patrascioiu, Arizona, Erhard Seiler, Munich

In our opinion the main benefit Physics can derive from Mathematical Physics
is that the latter can separate fact from fiction. There is one important area where
this would be sorely needed, that is the need to prove or disprove the dogma
in particle and condensed matter Physics that there is a fundamental difference
between Abelian and non-Abelian models, both in the case of two-dimensional
(2D) spin models and four-dimensional (4D) Yang-Mills theories. The dogma
states that the non-Abelian versions of those models enjoy the properties called
Asymptotic freedom and dynamical mass generation. This dogma is rooted in
the perturbative computation of the Callan-Symanzik B-function and has been
challenged by us from two sides:

1. We have produced an argument based on percolation theoretic consider-
ations that leads to the conclusion that all 2D O(N) models have a soft low
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temperature phase contrary to the dogma. Our arguments admittedly are not
mathematically rigorous, but it is very hard to see how they could fail and they
have never been challenged. Moreover published numerical studies lend support
to the existence of such a soft phase. It seems to us that Mathematical Physics
should recognize this as an important open problem and try to settle the question
once and for all.

2. It is obvious that our conclusions can only hold if perturbation theory
(PT) is misleading and making the wrong prediction for the Callan-Symanzik (-
function. Recent computations by us show that there is indeed something wrong
with the perturbative method applied to those models: It produces answers that
depend on the boundary conditions chosen even in the (termwise) thermody-
namic limit. This happens in 2D spin models with non-Abelian symmetry as
well as in lattice Yang-Mills theory in any number of dimensions. The challenge
to Mathematical Physics would be to find out which, if any, of those PT answers
constitute the correct asymptotic expansion for those models in the (presumably
unique) thermodynamic limit.

We have heard theoretical physicists express the opinion that mathematical
physicists have actually proven the correctness of the dogma. In fact the rigorous
results obtained so far can control the ultraviolet limit only at the price of
introducing some mass or infrared cutoff, whereas in our opinion it is control
of the infrared behavior that is the crucial point. It has been claimed that this
limitation is due only to technical difficulties, but we believe that these difficulties
are reflections of the troubles we have been pointing out, namely the unavoidable
large fluctuations in the infrared present in these models. Thus it would be most
desirable if Mathematical Physics could settle these issues one way or another.

David Ruelle, IHES

A discussion on physics and mathematics is likely to reflect contemporary
pressures on science. Let me mention some of those :

- pressure to do application-oriented research (US)

- pressure to use the French language in research (France)

- pressure to publish more and more at a time when one reads and less

- development of administrative power structures in mathematics (NSF)

- growing role of the media and scientific prizes (everywhere)

My contention is that such pressures are counterproductive in mathematical
physics (and in other fields where heavy equipment is not needed).

Let me discuss briefly the example of chaos. Now that the dust has settled a
bit, one must admit that the ideas of chaos have led to definite improvement of
our understanding of nature in several domains: meteorology, hydrodynamics,
astronomy of the solar systems, and others. If one looks at the papers that started
this field, it is clear that they were not motivated by the pressures mentioned
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above. They were motivated by irritation of the authors who did not understand
some fact, and worked until they had an explanation.

I have mentioned chaos because I know the subject, but I am not pushing
people to go into chaos now. I rather think that a scientist who wants to do a
research carreer in mathematical physics should start thinking about one of the
many irritating problems that we do not understand: developping a theory of
phase transitions, a theory of crystals, a theory of approach to equilibrium, a
theory of fully developed turbulence, and so on. I said to start thinking about
those topics, not to start writing papers.

Of course, leisurely thinking about science is definitely not a politically cor-
rect suggestion at this time in the US, but probably it remains the most efficient
way of hitting useful new ideas. I would find it quite natural that those people
who never find anything be discouraged to continue "doing research” all their
lives (but this idea is definitely not politically correct in France).

In conclusion, I suspect that politically correct research, and good research
have little relation with each other.

B. Schroer, Berlin

In many plenary talks and through the panel discussion, the crisis in the-
ortical and mathematical physics became obvious. It originates in the area of
what used to be quandum field theory and particle physics and by now pervades
large areas of mathematical physics. In this “new age” type of mathematical
physics (for which even a starting date was fixed in one of the plenary talks),
the main theme is mathematically oriented geometric inventions, disregarding
history and conceptual ideas (physical principles) to such a degree that one gets
the impression that the authors never even knew that there are such things.
Whereas inventions are very good for physicists (and some mathematicians),
they have a devastating influence on theoretical physics.

At the panel discussion we were given the choice between the Scylla of La-
grangian field theory with cutoff (to console us with the fact that there may be
no local theory behind perturbation theory as e.g. in QED, sigma-models etc.)
and the Cariddy of the new age mathematical physics.

Paradoxa, contradictions (i.e. the motor of theoretical physics after the Bohr
atomic model) and their enigmatic power are not en vogue any more.

Must this century, which started with great conceptual discoveries (Einstein
causality, the principles of quantum physics) end in conceptual poverty drowned
by sophisticated new age mathematical physics journalism? Is a fin de siecle
crisis a recurrent phenomenon?

If one has ears and eyes for new discoveries which ripen slowly and need to
avoid the limelight for the present time, one was not totally disappointed. A fun-
damental understanding of “new degrees of freedom” in low dimensional QFT
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and Statistical mechanics with potential rich physical harvest (in condensed mat-
ter physics) is one of the more interesting developments. These ideas seriously
challenges our framework of “quantization” and functional integrals (Feynman-
Kac formulas). There is even the hope that their understanding from first prin-
ciples (i.e. outside the context of specific conformal algebras) may sharpen our
conceptual senses in order to understand new degrees of freedom (e.g. confined
quarks) in 4-D theories beyond the quasi-classical straight jackets of present-day
quantized gauge theories.

Edward Witten, IAS, Princeton

I am replying to your requests for input to the roundtable discussion.

First I'd like to say that I am not happy with your proposing to exclude
applications to mathematics from the discussion. I realize that things may be
different in different areas of mathematical physics, but in the sort of things I
know best, when a mathematical result is really relevant to a physics problem it
often happens that, turning things around, the result can be deduced from the
behavior of the physics problem. Ignoring that is artificial and amounts to doing
the same thing in a less comprehensive way.

One of the bonuses of making explicit the mathematical implications of the
physics problem is that it attracts interest of people who might otherwise not
be interested in the physics and results in new points of view being brought to
bear. This has proved its worth.

It may well happen that some of the contributions that will advance ”un-
derstanding of nature” the most over time will appear to some observers to be
"mathematics.” In general to try to discuss mathematical physics while avoiding
mathematics seems to me to be a slippery slope, best avoided.

At any rate, to respond to other points in your letter, I do think that, looking
at things in the long run, some of the most exciting mysteries we know about in
trying to expand our knowledge of fundamental natural law are " mathematical.”
Certainly what fascinates me the most is the question of what really is the
underlying ”geometrical” structure that has the amazing manifestations we see
in string theory. I think that question is going to be " pulling the strings” behind
the scenes until it is dealt with successfully — which may be a while. Until then,
working on some of the manifestations can be a lot of fun and I suspect very
influential in the long run.

Anyway, the last paragraph was meant as a very brief statement of how I see
the role of what I do. (Though you invited us to make more specific suggestions
of small and midsize as well as big problems, I won’t do that here concerning
the things I work on since some of that will be implicit in the talk I'll be giving
at the same conference — the day after the roundtable.)

I do want to comment on one other area, however. I think that constructive
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field theorists have possibly, in the last few years, been overlooking the oppor-
tunity to expand their efforts into areas that could be influential in new ways.
The traditional goal in constructive field theory is

to construct more realistic physical models. This is an important and rightly
chosen goal. However, it is a very difficult goal and the best route to a satisfying
success might not be frontal assault. Raising, as I said above, new issues, attract-
ing new interest and new points of view might be more effective. Superrenormal-
izable theories in two dimensions are considered relatively trivial in constructive
field theory and people don’t work on them so much any more. However, people
in this area should take note of very rich and fascinating geometrical properties
of such superrenormalizable 2d theories (mostly in the supersymmetric case)
that have been discovered in the last few years at the heuristic level by string
theorists. I do believe that developing some of this material rigorously (I have a
hunch that while a hard project it might be doable) would attract a lot of new
interest and new points of view from the mathematical world, possibly giving
the field a big boost. When I think about what opportunities are being missed
right now, this is one that comes to mind. (Note that my advice is in keeping
with the comments I stated in the first couple of paragraphs of this letter.)

S.T. Yau, Cambridge
Mathematical Problems in Velocity

— 1. Classify compact four dimensional Einstein manifolds with nonegative
scalar curvature. In particular, does S* admit any exotic Einstein metric.
After Wick rotation, Schwarzchild metric becomes euclidean which has an
asymptotic end equal to S* x §2. Is it the only Ricci flat manifold with this
property.

— 2. Find a right definition of quasilocal mass in general relativity. Use it to
formulate how black hole forms. A proposal was K. Thorne’s hoop conjecture
that if the mass is greater than the circumference of a region, black hole
forms.

— 3. Formulate and prove the cosmic censorship of Penrose. In particular, prove
that the total mass is greater than ig when A is the area of the outermost
black hole.

— 4. Prove the nonlinear stability of the Schwarzchild or Kerr solution.

— 5. Given a generic asymptotic flat nonsingular initial data set on R3, what
is the structure of the null infinity of the space time.

— 6.Find (and prove) an approximate solution of the two body problem in
general relativity.



