
Computer Science as an Art
Donald E. Knuth

Award Lecture

[The Turing Award citation read by Bernard A. Galler, chairman of the 1974 Turing Award Committee, on the
presentation of this lecture on November 11 at the ACM Annual Conference in San Diego.]

The A.M. Turing Award of the ACM is presented annually by the ACM to an individual selected for his contribu-
tions of a technical nature made to the computing community. In particular, these contributions should have had
significant influence on major segment of the computer field.

“The 1974 A.M. Turing Award is presented to Professor Donald E. Knuth of Stanford University for a number of
major contributions to the analysis of algorithms and the design of programming languages, and in particular for his
most significant contributions to the “art of computer programming” through his series of well-known books. The
collections of techniques, algorithms and relevant theory in these books have served as a focal point for developing
curricula and as an organizing influence on computer science.”

Such a formal statement cannot put into proper perspective the role which Don Knuth has been playing in computer
science, and in the computer industry as a whole. It has been my experience with respect to the first recipient of
the Turing Award, Professor Alan J. Perlis, that at every meeting in which he participates he manages to provide
the insight into the problems being discussed that becomes the focal point of discussion for the rest of the meeting.
In a very similar way, the vocabulary, the examples, the algorithms, and the insight that Don Knuth has provided
in his excellent collection of books and papers have begun to find their way into a great many discussions in almost
every area of the field. This does not happen easily. As every author knows, even a single volume requires a great
deal of careful organization and hard work. All the more must we appreciate the clear view and the patience and
energy which Knuth must have had to plan seven volumes and to set about implementing his plan so carefully and
thoroughly.

It is significant that this award and the others that he has been receiving are being given to him after three volumes
of his work have been published. We are clearly ready to signal to everyone our appreciation of Don Knuth for his
dedication and his contributions to our discipline. I am very pleased to have chaired the Committee that has chosen
Don Knuth to receive the 1974 A.M. Turing Award of the ACM.

When Communications of the ACM began publication in 1959, the members of acm’s Editorial
Board made the following remark as they described the purposes of acm’s periodicals [2] : “If
computer programming is to become an important part of computer research and development, a
transition of programming from an art to a disciplined science must be effected.” Such a goal has
been a continually recurring theme during the ensuing years ; for example, we read in 1970 of the
“first steps toward transforming the art of programming into a science” [26]. Meanwhile we have
actually succeeded in making our discipline a science, and in a remarkably simple way : merely by

1974 ACM Turing Copyright c©1974, Asociation for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted provided that ACM’s
copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
Communications of the ACM, December 1974, Volume 17, number 12.
Author’s address, Computer Science Department, Stanford University, Stanford, CA 94305

1

deciding to call it “computer science.”

Implicit in these remarks is the notion that there is something undesirable about an area of hu-
man activity that is classified as an “art” ; it has to be a Science before it has any real stature.
On the other hand, I have been working for more than 12 years on a series of books called “The
Art of Computer Programming.” People frequently ask me why I picked such a title ; and in fact
some people apparently don’t believe that I really did so, since I’ve seen at least one bibliographic
reference to some books called “The Act of Computer Programming.”

In this talk I shall try to explain why I think “Art” is the appropriate word. I will discuss what
it means for something to be an art, in contrast to being a science ; I will try to examine whether
arts are good things or bad things ; and I will try to show that a proper viewpoint of the subject
will help us all to improve the quality of what we are now doing.

One of the first times I was ever asked about the title of my books was in 1966, during the last
previous ACM national meeting held in Southern California. This was before any of the books were
published, and I recall having lunch with a friend at the convention hotel. He knew how conceited
I was, already at that time, so he asked if I was going to call my books “An Introduction to Don
Knuth.” I replied that, on the contrary, I was naming the books after him. His name Art Evans,
(The Art of Computer Programming, in person.)

From this story we can conclude that the word “art” has more than one meaning. In fact, one of
the nicest things about the word is that it is used in many different senses, each of which is quite
appropriate in connection with computer programming. While preparing this talk, I went to the
library to find out what people have written about the word “art” through the years ; and after
spending several fascinating days in the stacks, I came to the conclusion that “art” must be one of
the most interesting words in the English language.

The Arts of Old

If we go back to Latin roots, we find ars, artis meaning “skill.” It is perhaps significant that the
corresponding Greek word was τ έχνη, the root of both “technology” and “technique.”

Nowadays when someone speaks of “art” you probably think first of “fine arts” such as painting and
sculpture, but before the twentieth century the word was generally used in quite a different sense.
Since this older meaning of “art” still survives in many idioms, especially when we are contrasting
art with science, I would like to spend the next few minutes talking about art in its classical sense.

In medieval times, the first universities were established to teach the seven so-called “liberal arts,”
namely grammar, rhetoric, logic, arithmetic, geometry, music, and astronomy. Note that this is
quite different from the curriculum of today’s liberal arts colleges, and that at least three of the
original seven liberal arts are important components of computer science. At that time, an “art”
meant something devised by man’s intellect, as opposed to activities derived from nature or ins-
tinct ; “liberal” arts were liberated or free, in contrast to manual arts such as plowing (cf. [6]).
During the middle ages, the word “art” by itself usually meant logic [4], which usually meant the

2

study of syllogisms.

Science vs. Art

The word “science” seems to have been used for many years in about the same sense as “art” ; for
example, people spoke also of the seven liberal sciences, which’ were the same as the seven liberal
arts [1], Duns Scotus in the thirteenth century called logic “the Science of Sciences, and the Art of
Arts” (cf. [12, p. 34f]). As civilization and learning developed, the words took on more and more
independent meanings, “science” being used to stand for knowledge, and “art” for the application
of knowledge. Thus, the science of astronomy was the basis for the art of navigation. The situation
was almost exactly like the way in which we now distinguish between “science” and “engineering.”

Many authors wrote about the relationship between art and science in the nineteenth century, and
I believe the best discussion was given by John Stuart Mill. He said the following things, among
others, in 1843 [28] :

Several sciences are often necessary to form the groundwork of a single art. Such is
the complication of human affairs, that to enable one thing to be done, it is often
requisite to know the nature and properties of many things... Art in general consists of
the truths of Science, arranged in the most convenient order for practice, instead of the
order which is the mast convenient for thought. Science groups and arranges its truths
so as to enable us to take in at one view as much as possible of the general order of
the universe. Art... brings together from parts of the field of science most remote from
one another, the truths relating to the production of the different and heterogeneous
conditions necessary to each effect which the exigencies of practical life require.

As I was looking up these things about the meanings of “art,” I found that authors have been
calling for a transition from art to science for at least two centuries. For example, the preface to
a textbook on mineralogy, written in 1784, said the following [17] : “Previous to the year 1780,
mineralogy, though tolerably understood by many as an Art, could scarce be deemed a Science.”

According to most dictionaries “science” means knowledge that has been logically arranged and
systematized in the form of general “laws.” The advantage of science is that it saves us from the need
to think things through in each individual case ; we can turn our thoughts to higher-level concepts.
As John Ruskin wrote in 1853 [32] : “The work of science is to substitute facts for appearances,
and demonstrations for impressions.”

It seems to me that if the authors I studied were writing today, they would agree with the follo-
wing characterization : Science is knowledge which we understand so well that we can teach it to a
computer ; and if we don’t fully understand something, it is an art to deal with it. Since the notion
of an algorithm or a computer program provides us with an extremely useful test for the depth of
our knowledge about any given subject, the process of going from an art to a science means that
we learn how to automate something.

Artificial intelligence has been making significant progress, yet there is a huge gap between what
computers can do in the foreseeable future and what ordinary people can do. The mysterious in-

3

sights that people have when speaking, listening, creating, and even when they are programming,
are still beyond the reach of science ; nearly everything we do is still an art.

From this standpoint it is certainly desirable to make computer programming a science, and we
have indeed come a long way in the 15 years since the publication of the remarks I quoted at
the beginning of this talk. Fifteen years ago computer programming was so badly understood that
hardly anyone even thought about proving programs correct ; we just fiddled with a program until
we “knew” it worked. At that time we didn’t even know how to express the concept that a program
was correct, in any rigorous way. It is only in recent years that we have been learning about the
processes of abstraction by which programs are written and understood ; and this new knowledge
about programming is currently producing great payoffs in practice, even though few programs are
actually proved correct with complete rigor, since we are beginning to understand the principles
of program structure. The point is that when we write programs today, we know that we could in
principle construct formal proofs of their correctness if we really wanted to, now that we understand
how such proofs are formulated. This scientific basis is resulting in programs that are significantly
more reliable than those we wrote in former days when intuition was the only basis of correctness.

The field of “automatic programming” is one of the major areas of artificial intelligence research
today. Its proponents would love to be able to give a lecture entitled “Computer Programming
as an Artifact” (meaning that programming has become merely a relic of bygone days), because
their aim is to create machines that write programs better than we can, given only the problem
specification. Personally I don’t think such a goal will ever be completely attained, but I do think
that their research is extremely important, because everything we learn about programming helps
us to improve our own artistry. In this sense we should continually be striving to transform every
art into a science : in the process, we advance the art.

Science and Art

Our discussion indicates that computer programming is by now both a science and an art, and that
the two aspects nicely complement each other. Apparently most authors who examine such a ques-
tion come to this same conclusion, that their subject is both a science and an art, whatever their
subject is (cf. [25]). I found a book about elementary photography, written in 1893, which stated
that “the development of the photographic image is both an art and a science” [13]. In fact, when I
first picked up dictionary in order to study the words “art” and “science,” I happened to glance at
the editor’s preface, which began by saying, “The making of a dictionary is both a science and an
art.” The editor of Funk & Wagnall’s dictionary [27] observed that the painstaking accumulation
and classification of data about words has a scientific character, while a well-chosen phrasing of
definitions demands the ability to write with economy and precision : “The science without the art
is likely to be ineffective ; the art without the science is certain to be inaccurate.”

When preparing this talk I looked through the card catalog at Stanford library to see how other
people have been using the words “art” and “science” in the titles of their books. This turned out
to be quite interesting.

For example, I found two books entitled The Art of Playing the Piano [5, 15], and others called

4

The Science of Pianoforte Technique [10], The Science of Pianoforte Practice [30]. There is also a
book called The Art of Piano Playing : A Scientific Approach [22].

Then I found a nice little book entitled The Gentle Art of Mathematics [31], which made me so-
mewhat sad that I can’t honestly describe computer programming as a “gentle art.”

I had known for several years about a book called The Art of Computation, published in San
Francisco, 1879, by a man named C. Frusher Howard [14]. This was a book on practical business
arithmetic that had sold over 400,000 copies in various editions by 1890. I was amused to read the
preface, since it shows that Howard’s philosophy and the intent of his title were quite different from
mine ; he wrote : “A knowledge of the Science of Number is of minor importance ; skill in the Art
of Reckoning is absolutely indispensible.”

Several books mention both science and art in their titles, notably The Science of Being and Art of
Living by Maharishi Mahesh Yogi [24]. There is also a book called The Art of Scientific Discovery
[11], which analyzes how some of the great discoveries of science were made.

So much for the word “art” in its classical meaning. Actually when I chose the title of my books,
I wasn’t thinking primarily of art in this sense, I was thinking more of its current connotations.
Probably the most interesting book which turned up in my search was a fairly recent work by
Robert E. Mueller called The Science of Art [29]. Of all the books I’ve mentioned, Mueller’s comes
closest to expressing what I want to make the central theme of my talk today, in terms of real
artistry as we now understand the term. He observes : “It was once thought that the imaginative
outlook of the artist was death for the scientist. And the logic of science seemed to spell doom to
all possible artistic flights of fancy.” He goes on to explore the advantages which actually do result
from a synthesis of science and art.

A scientific approach is generally characterized by the words logical, systematic, impersonal, calm,
rational, while an artistic approach is characterized by the words aesthetic, creative, humanitarian,
anxious, irrational. It seems to me that both of these apparently contradictory approaches have
great value with respect to computer programming.

Emma Lehmer wrote in 1956 that she had found coding to be “an exacting science as well as an
intriguing art” [23]. H.S.M. Coxeter remarked in 1957 that he sometimes felt “more like an artist
than a scientist” [7]. This was at the time C.P. Snow was beginning to voice his alarm at the
growing polarization between “two cultures” of educated people [34, 35]. He pointed out that we
need to combine scientific and artistic values if we are to make real progress.

Works of Art

When I’m sitting in an audience listening to a long lecture, my attention usually starts to wane
at about this point in the hour. So I wonder, are you getting a little tired of my harangue about
“science” and “art” ? I really hope that you’ll be able to listen carefully to the rest of this, anyway,
because now comes the part about which I feel most deeply.

5

When I speak about computer programming as an art, I am thinking primarily of it as an art form,
in an aesthetic sense. The chief goal of my work as educator and author is to help people learn
how to write beautiful programs. It is for this reason I was especially pleased to learn recently [32]
that my books actually appear in the Fine Arts Library at Cornell University. (However, the three
volumes apparently sit there neatly on the shelf, without being used, so I’m afraid the librarians
may have made a mistake by interpreting my title literally.)

My feeling is that when we prepare a program, it can be like composing poetry or music ; as Andrei
Ershov has said [9], programming can give us both intellectual and emotional satisfaction, because
it is a real achievement to master complexity and to establish a system of consistent rules.

Furthermore when we read other people’s programs, we can recognize some of them as genuine
works of art. I can still remember the great thrill it was for me to read the listing of Stan Poley’s
soap ii assembly program in 1958 ; you probably think I’m crazy, and styles have certainly changed
greatly since then, but at the time it meant a great deal to me to sec how elegant a system program
could be, especially by comparison with the heavy-handed coding found in other listings I had
been studying at the same time. The possibility of writing beautiful programs, even in assembly
language, is what got me hooked on programming in the first place.

Some programs are elegant, some are exquisite, some are sparkling. My claim is that it is possible
to write grand programs, noble programs, truly magnificent ones !

Taste and Style

The idea of style in programming is now coming to the forefront at last, and I hope that most
of you have seen the excellent little book on Elements of Programming Style by Kernighan and
Plauger [16]. In this connection it is most important for us all to remember that there is no one
“best” style ; everybody has his own preferences, and it is a mistake to try to force people into an
unnatural mold. We often hear the saying, “I don’t know anything about art, but I know what I
like.” The important thing is that you really like the style you are using ; it should be the best way
you prefer to express yourself.

Edsger Dijkstra stressed this point in the preface to his Short Introduction to the Art of Program-
ming [8] :

It is my purpose to transmit the importance of good taste and style in programming,
[but] the specific elements of style presented serve only to illustrate what benefits can be
derived from “style” in general. In this respect I feel akin to the teacher of composition
at a conservatory : he does not teach his pupils how to compose a particular symphony,
he must help his pupils to find their own style and must explain to them what is
implied by this. (It has been this analogy that made me talk about “The Art of
Programming.”)

Now we must ask ourselves “What is good style, and what is bad style ?” We should not be too
rigid about this in judging other people’s work. The early nineteenth-century philosopher Jeremy

6

Bentham put it this way [3, Bk. 3, Ch. 1] :

Judges of elegance and taste consider themselves as benefactors to the human race,
whilst they are really only the interrupters of their pleasure... There is no taste which
deserves the epithet good, unless it be the taste for such employments which, to the
pleasure actually produced by them, conjoin some contingent or future utility : there
is no taste which deserves to be characterized as bad, unless it be a taste for some
occupation which has a mischievous tendency.

When we apply our own prejudices to “reform” someone else’s taste, we may be unconsciously
denying him some entirely legitimate pleasure. That’s why I don’t condemn a lot of things pro-
grammers do, even though I would never enjoy doing them myself. The important thing is that
they are creating something they feel is beautiful.

In the passage I just quoted, Bentham does give us some advice about certain principles of aes-
thetics which are better than others, namely the “utility” of the result. We have some freedom in
setting up our personal standards of beauty, but it is especially nice when the things we regard as
beautiful are also regarded by other people as useful. I must confess that I really enjoy writing com-
puter programs ; and I especially enjoy writing programs which do the greatest good, in some sense.

There are many senses in which a program can be “good,” of course. In the first place, it’s especially
good to have a program that works correctly. Secondly it is often good to have a program that
won’t be hard to change, when the time for adaptation arises. Both of these goals are achieved when
the program is easily readable and understandable to a person who knows the appropriate language.

Another important way for a production program to be good is for it to interact gracefully with its
users, especially when recovering from human errors in the input data. It’s a real art to compose
meaningful error messages or to design flexible input formats which are not error-prone.

Another important aspect of program quality is the efficiency with which the computer’s resources
are actually being used. I am sorry to say that many people nowadays are condemning program
efficiency, telling us that it is in bad taste. The reason for this is that we are now experiencing
a reaction from the time when efficiency was the only reputable criterion of goodness, and pro-
grammers in the past have tended to be so preoccupied with efficiency that they have produced
needlessly complicated code ; the result of this unnecessary complexity has been that net efficiency
has gone down, due to difficulties of debugging and maintenance.

The real problem is that programmers have spent far too much time worrying about efficiency in
the wrong places and at the wrong times ; premature optimization is the root of all evil (or at least
most of it) in programming.

We shouldn’t be penny wise and pound foolish, nor should we always think of efficiency in terms
of so many percent gained or lost in total running time or space. When we buy a car, many of us
are almost oblivious to a difference of $50 or $100 in its price, while we might make a special trip
to a particular store in order to buy a 5O 6 c item for only 25 6 c. My point is that there is a time
and place for efficiency ; I have discussed its proper role in my paper on structured programming,

7

which appears in the current issue of Computing Surveys [21].

Less Facilities : More Enjoyment

One rather curious thing I’ve noticed about aesthetic satisfaction is that our pleasure is significantly
enhanced when we accomplish something with limited tools. For example, the program of which
I personally am most pleased and proud is a compiler I once wrote for a primitive minicomputer
which had only 4096 words of memory, 16 bits per word. It makes a person feel like a real virtuoso
to achieve something under such severe restrictions.

A similar phenomenon occurs in many other contexts. For example, people often seem to fall in love
with their Volkswagens but rarely with their Lincoln Continentals (which presumably run much
better). When I learned programming, it was a popular pastime to do as much as possible with
programs that fit on only a single punched card. I suppose it’s this same phenomenon that makes
apl enthusiasts relish their “one-liners.” When we teach programming nowadays, it is a curious fact
that we rarely capture the heart of a student for computer science until he has taken a course which
allows “hands on” experience with a minicomputer. The use of our large-scale machines with their
fancy operating systems and languages doesn’t really seem to engender any love for programming,
at least not at first.

It’s not obvious how to apply this principle to increase programmers’enjoyment of their work. Sur-
ely programmers would groan if their manager suddenly announced that the new machine will have
only half as much memory as the old. And I don’t think anybody, even the most dedicated “pro-
gramming artists,” can be expected to welcome such a prospect, since nobody likes to lose facilities
unnecessarily. Another example may help to clarify the situation : Film-makers strongly resisted the
introduction of talking pictures in the 1920’s because they were justly proud of the way they could
convey words without sound. Similarly, a true programming artist might well resent the introduc-
tion of more powerful equipment ; today’s mass storage devices tend to spoil much of the beauty
of our old tape sorting methods. But today’s film makers don’t want to go back to silent films, not
because they’re lazy but because they know it is quite possible to make beautiful movies using the
improved technology. The form of their art has changed, but there is still plenty of room for artistry.

How did they develop their skill ? The best film makers through the years usually seem to have
learned their art in comparatively primitive circumstances, often in other countries with a limited
movie industry. And in recent years the most important things we have been learning about pro-
gramming seem to have originated with people who did not have access to very large computers.
The moral of this story, it seems to me, is that we should make use of the idea of limited resources
in our own education. We can all benefit by doing occasional “toy” programs, when artificial res-
trictions are set up, so that we are forced to push our abilities to the limit. We shouldn’t live in the
lap of luxury all the time, since that tends to make us lethargic. The art of tackling miniproblems
with all our energy will sharpen our talents for the real problems, and the experience will help us
to get more pleasure from our accomplishments on less restricted equipment.

In a similar vein, we shouldn’t shy away from “art for art’s sake” ; we shouldn’t feel guilty about
programs that are just for fun. I once got a great kick out of writing a one-statement algol

8

program that invoked an innerproduct procedure in such an unusual way that it calculated the
mth prime number, instead of an innerproduct [19]. Some years ago the students at Stanford were
excited about finding the shortest fortran program which prints itself out, in the sense that the
program’s output is identical to its own source text. The same problem was considered for many
other languages. I don’t think it was a waste of time for them to work on this ; nor would Jeremy
Bentham, whom I quoted earlier, deny the “utility” of such pastimes [3, Bk. 3, Ch. 1]. “On the
contrary,” he wrote, “there is nothing, the utility of which is more incontestable. To what shall the
character of utility be ascribed, if not to that which is a source of pleasure ?”

Providing Beautiful Tools

Another characteristic of modern art is its emphasis on creativity. It seems that many artists these
days couldn’t care less about creating beautiful things ; only the novelty of an idea is important.
I’m not recommending that computer programming should be like modern art in this sense, but
it does lead me to an observation that I think is important. Sometimes we are assigned to a pro-
gramming task which is almost hopelessly dull, giving us no outlet whatsoever for any creativity ;
and at such times a person might well come to me and say, “So programming is beautiful ? It’s
all very well for you to declaim that I should take pleasure in creating elegant and charming pro-
grams, but how am I supposed to make this mess into a work of art ?” Well, it’s true, not all
programming tasks are going to be fun. Consider the “trapped housewife,” who has to clean off the
same table every day : there’s not room for creativity or artistry in every situation. But even in
such cases, there is way to make a big improvement : it is still a pleasure to do routine jobs if we
have beautiful things to work with. For example, a person will really enjoy wiping off the dining
room table, day after day, if it is a beautifully designed table made from some fine quality hardwood.

Therefore I want to address my closing remarks to the system programmers and the machine de-
signers who produce the systems that the rest of us must work with. Please, give us tools that are
a pleasure to use, especially for our routine assignments, instead of providing something we have
to fight with. Please, give us tools that encourage us to write better programs, by enhancing our
pleasure when we do so.

It’s very hard for me to convince college freshmen that programming is beautiful, when the first
thing I have to tell them is how to punch “slash slash job equals so-and-so.” Even job control
languages can be designed so that they are a pleasure to use, instead of being strictly functional.

Computer hardware designers can make their machines much more pleasant to use, for example
by providing floating-point arithmetic which satisfies simple mathematical laws. The facilities pre-
sently available on most machines make the job of rigorous error analysis hopelessly difficult, but
properly designed operations would encourage numerical analysts to provide better subroutines
which have certified accuracy (cf. [20, p. 204]).

Let’s consider also what software designers can do. One of the best ways to keep up the spirits of a
system user is to provide routines that he can interact with. We shouldn’t make systems too auto-
matic, so that the action always goes on behind the scenes ; we ought to give the programmer-user
a chance to direct his creativity into useful channels. One thing all programmers have in com-

9

mon is that they enjoy working with machines ; so let’s keep them in the loop. Some tasks are best
done by machine, while others are best done by human insight ; and a properly designed system will
find the right balance. (I have been trying to avoid misdirected automation for many years, cf. [18].)

Program measurement tools make a good case in point. For years, programmers have been una-
ware of how the real costs of computing are distributed in their programs. Experience indicates that
nearly everybody has the wrong idea ubout the real bottlenecks in his programs ; it is no wonder
that attempts at efficiency go awry so often, when a programmer is never given a breakdown of
costs according to the lines of code he has written. His job is something like that of a newly married
couple who try to plan a balanced budget without knowing how much the individual items like food,
shelter, and clothing will cost. All that we have been giving programmers is an optimizing compiler,
which mysteriously does something to the programs it translates but which never explains what it
does. Fortunately we are now finally secing the appearance of systems which give the user credit
for some intelligence ; they automatically provide instrumentation of programs and appropriate
feedback about the real costs. These experimental systems have been a huge success, because they
produce measurable improvements, and especially because they are fun to use, so I am confident
that it is only a matter of time before the use of such systems is standard operating procedure. My
paper in Computing Surveys [21] discusses this further, and presents some ideas for other ways in
which an appropriate interactive routine can enhance the satisfaction of user programmers.

Language designers also have an obligation to provide languages that encourage good style, since
we all know that style is strongly influenced by the language in which it is expressed. The present
surge of interest in structured programming has revealed that none of our existing languages is
really ideal for dealing with program and data structure, nor is it clear what an ideal language
should be. Therefore I look forward to many careful experiments in language design during the
next few years.

Summary

To summarize : We have seen that computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and especially because it produces
objects of beauty. A programmer who subconsciously views himself as an artist will enjoy what he
does and will do it better. Therefore we can be glad that people who lecture at computer confe-
rences speak about the state of the Art.

References

1. Bailey, Nathan. The Universal Etymological English Dictionary, T. Cox, London, 1727, See
“Art,” “Liberal,” and “Science.”

2. Bauer, Walter F., Juncosa, Mario L., and Perlis, Alan J. ACM publication policies and plans.
J. ACM 6 (Apr. 1959), 121-122.

3. Bentham, Jeremy. The Rationale of Reward. Trans. from Théorie des peines et des récom-
penses, 1811, by Richard Smith. J. & H. L. Hunt, London, 1825.

4. The Century Dictionary and Cyclopedia 1. The Century Co., New York, 1889.

10

5. Clementi, Muzio. The Art of Playing the Piano. Trans. from L’art de jouer le pianoforte by
Max Vogrich. Schirmer, New York, 1898.

6. Colvin, Sidney. “Art.” Encyclopaedia Britannica, eds 9, 11, 12, 13, 1875-1926.

7. Coxeter, H. S. M. Convocation address, Proc. 4th Canadian Math. Congress, 1957, pp. 8-10.

8. Dijkstra, Edsger W. EWD316 : A Short Introduction to the Art of Programming. T. H.
Eindhoven, The Netherlands, Aug. 1971.

9. Ershov, A. P. Aesthetics and the human factor in programming, Comm. ACM 15 (July
1972), 501-505.

10. Fielden, Thomas. The Science of Pianoforte Technique. Macmillan, London, 1927.

11. Gore, George, The Art of Scientific Discovery. Longmans, Green, London, 1878.

12, Hamilton, Willian, Lectures on Logic 1. Wm. Blackwood, Edinburgh, 1874.

13. Hodges, John A. Elementary Photography : The “Amateur Photographer” Library 7. London,
1893. Sixth ed, revised and enlarged, 1907, p. 58.

14. Howard, C. Frusher. Howard’s Art of Computation and golden rule for equation of payments
for schools, business colleges and self-culture.... C.F. Howard, San Francisco, 1879.

15. Hummel, J.N. The Art of Playing she Piano Forte. Boosey, London, 1827.

16. Kernighan B.W., and Plauger, P.J. The Elements of Programming Style. McGraw-Hill, New
York, 1974.

17. Kirwan, Richard. Elements of Mineralogy. Elmsly, London, 1784.

18. Knuth, Donald E, Minimizing drum latency time. J. ACM 8 (Apr. 1961), 119-150.

19. Knuth, Donald E., and Merner, J.N. ALGOL 60 confidential. Comm. ACM 4 (June 1961),
268-272.

20. Knuth, Donald E. Seminumerical Algorithms : The Art of Computer Programming 2.
Addison-Wesley, Reading, Mass., 1969.

21. Knuth, Donald E. Structured programming with go to statements, Computing Surveys 6
(Dec. 1974), pages in makeup.

22. Kochevitsky, George. The Art of Plano Playing : A Scientific Approach. Summy-Birchard,
Evanston, III, 1967.

23. Lehmer, Emma. Number theory on the SWAC. Proc. Symp. Applied Math. 6, Amer. Math.
Soc. (1956), 103-108.

24. Mahesh Yogi, Maharishi. The Science of Being and Art of Living. Allen & Unwin, London,
1963.

25. Malevinsky, Moses L. The Science of Playwriting. Brentano’s, New York, 1925.

11

26. Manna, Zohar, and Pnueli, Amir. Formalization of properties of functional programs. J.
ACM 17 (July 1970), 555-569.

27. Marckwardt, Albert H. Preface to Funk and Wagnall’s Standard College Dictionary. Har-
court, Brace & World, New York, 1963, vii.

28. Mill, John Stuart. A System af Logic, Ratiocinative and Inductive. London, 1843, The quo-
tations are from the introduction, §2, and from Book 6, Chap. 11 (12 in later editions),
§5.

29, Mueller, Robert E. The Science of Art. John Day, New York, 1967.

30. Parsons, Albert Ross. The Science of Pianoforte Practice. Schirmer, New York, 1886.

31. Pedoe, Daniel. The Gentle Art of Machematics. English U. Press, London, 1953.

32. Ruskin, John. The Stones of Venice 3. London, 1853.

33. Salton, G.A. Personal communication, June 21, 1974.

34. Snow, C.P. The two cultures. The New Statesman and Nation 52 (Oct. 6, 1956), 413-414.

35. Snow, C.P. The Two Cultures : and a Second Look. Cambridge University Press, 1964.

12

