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CARL JACOBI

Abstract. This is a translation of Carl Jacobi’s Suite des notices sur les fonctions elliptiques
published in Crelle’s Journal in 1828. The full citation is given in reference [5]. The paper is a
letter to August Crelle which continues Jacobi’s advertisement of elliptic function results published
earlier in the same volume of Crelle’s Journal (see [4]). Some of the notation in Jacobi’s paper has
been modernized in this translation.

In this letter, Jacobi reformulates elliptic functions in terms of theta functions in order to obtain
simplifications of elliptic function theory. He briefly discusses modular transformations in both
elliptic function and theta function theory. He uses the Fourier expansions of the theta functions
to derive a partial differential equation, specifically the heat equation, which the theta functions
satisfy. He turns to an applications of an identity discovered by Poisson and concludes with a
discussion of the application of elliptic functions to representations of integers as sums of squares.

I add the development of elliptic functions of the second and third kinds to the formulas given
in my last letter [4]. Following Mr. Legendre, define:

∆(φ) := ∆(φ, k) :=
√

1− k2 sin2 φ,

E(φ) := E(φ|k) :=
∫ φ

0
∆(φ) dφ,

E := E(k) := E(π
2 |k),

F(φ) := F(φ|k) :=
∫ φ

0

dφ

∆(φ)
,

K := K(k) := F(π
2 |k).

Following my own conventions, if we set φ = am2Kx
π and q = exp(−πK′/K), then we obtain

KE(φ)− EF(φ) = 2π

∞∑
n=1

nqn2
sin 2nx

1− 2
∞∑

n=1

qn2
cos 2nx

(1)

= 2π
∞∑

n=1

qn sin 2nx

1− q2n
.
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2 CARL JACOBI

Mr. Legendre showed that the following expression, depending on elliptic functions of the second
and third types, is symmetric in the angles A and φ:

(2)
∫ φ

0

[
2k2 sin A cos A ∆(A) sin2 φ

∆(φ)(1− k2 sin2 A sin2 φ)

]
dφ− 2F (φ) (KE(A)− EF(A))

K
.

Setting φ = am2Kx
π and A = am2Kα

π , I obtain:

log

1 + 2
∞∑

n=1

(−1)nqn2
cos 2n(x− α)

1 + 2
∞∑

n=1

(−1)nqn2
cos 2n(x + α)

− 4
∞∑

n=1

qn sin 2nα sin 2nx

1− q2n
.

These equations are symmetric in x and α. The first covers all cases of elliptic integrals of the
third kind in which α is ranges over complex values.

The elliptic functions can be replaced by the new transcendental function ϑ4 defined by the
following series expansion:1

ϑ4(x, q) := 1 + 2
∞∑

n=1

(−1)nqn2
cos 2nx.

Letting ω = − log q, we obtain the following identities:

ϑ4(x + π, q) = ϑ4(x, q),(3)

ϑ4(x + ıω, q) = −q−1e−2ıxϑ4(x, q),(4)

ϑ4( ıω
2 , q) = 0,(5)

ϑ4(x + π
2 , q) = ϑ4(x,−q).(6)

Define:

ϑ1(x, q) : = −ıq
1
4 eıxϑ4(x + ıω

2 )

= ıq
1
4 e−ıxϑ4(x− ıω

2 ).

We obtain the series expansion:

ϑ1(x, q) := −2
∞∑

n=1

(−1)nq(2n−1)2/4 sin(2n− 1)x.

In addition:

ϑ1(x + π, q) = −ϑ1(x, q),(7)

ϑ1(x + ıω, q) = −q−1e−2ıxϑ1(x, q),(8)

ϑ1(ıω, q) = 0,(9)

ϑ1(x + ıω
2 , q) = ıq−

1
4 e−ıxϑ4(x, q),(10)

ϑ4(x + ıω
2 , q) = ıq−

1
4 e−ıxϑ1(x, q).(11)

1In this paper, Jacobi uses the notation Θ for ϑ4 and H for ϑ1. This differs by rescaling of the argument from the
usages in the Fundamenta Nova. Since the notations Θ and H are conventionally reserved for the theta functions of
the Fundamenta Nova, we use the more familiar notation here.
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We can write the elliptic functions in terms of ϑ1 and ϑ4 (or in terms of either one of them):

sn
2Kx

π
= 1√

k

ϑ1(x, q)
ϑ4(x, q)

,(12)

cn
2Kx

π
=
√

k′

k

ϑ1(x + π
2 , q)

ϑ4(x, q)
,(13)

dn
2Kx

π
= k′

ϑ4(x + π
2 , q)

ϑ4(x, q)
.(14)

The invariants k, k′ and K are obtained from the following identities:√
2K
π

= ϑ4(π
2 ) = 1 + 2

∞∑
n=1

qn2
,(15) √

2k′K
π

= ϑ4(0) = 1 + 2
∞∑

n=1

(−1)nqn2
,(16) √

2kK
π

= ϑ1(π
2 ) = q

1
4 ϑ4(π

2 + ıω) = 2
∞∑

n=1

q(2n−1)2/4.(17)

The elliptic integral of the third kind (1) reduces to the simple expression:

log
ϑ4(x− α, q)
ϑ4(x + α, q)

.

Consider the following striking identity, easily obtained using elementary trigonometry:

(18) ϑ1(x, q)ϑ4(y, q)− ϑ1(y, q)ϑ4(x, q) = ϑ1

(x−y
2 ,

√
q
)
ϑ4

(x+y
2 ,

√
q
)

i.e.: [ ∞∑
n=0

(−1)nq(2n+1)2/4 sin(2n + 1)x

]
×

[
1 + 2

∞∑
n=1

(−1)nqn2
cos 2nx

]
(19a)

−

[ ∞∑
n=0

(−1)nq(2n+1)2/4 sin(2n + 1)X

]
×

[
1 + 2

∞∑
n=1

(−1)nqn2
cos 2nX

]
(19b)

= 2

[ ∞∑
n=0

(−1)nq(2n+1)2/8 sin(2n + 1)(x−X)
2

]
(19c)

×

[ ∞∑
n=0

(−1)nq(2n+1)2/8 sin(2n + 1)(x + X)
2

]
(19d)

From this identity, we obtain equations (12,13,14), Euler’s elliptic function summation theorem,
the derivative:

d

dx
sn

2Kx

π
=

2Kx

π
cn

2Kx

π
dn

2Kx

π
,

and a number of other results.
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The two theta functions can be formulated as infinite products:

ϑ4(x, q) = C
∞∏

n=1

(1− 2q2n−1 cos 2x + q4n−2),

ϑ1(x, q) = 2 4
√

q C sin x
∞∏

n=1

(1− 2q2n cos 2x + q4n),

where C is a constant. Applying Côtes’ theorem to these products gives the general theory for trans-
formation and multiplication of theta functions, and, as a corollary, that of the elliptic functions.
In effect, by Côtes’ theorem, if n is any odd positive integer, then

n−1∏
m=0

ϑ4(x + 2mπ
n , q) = C ′ϑ4(nx, qn),(20)

(−1)(n−1)/2
n−1∏
m=0

ϑ1(x + 2mπ
n , q) = C ′ϑ1(nx, qn),(21)

where C ′ is another constant. If we denote by K(n) and k(n) the quantities which depend on qn in
the same way as K and k depend on q, then using identity (12), we obtain:

sn
2K(n)x

π
=

1√
k(n)

ϑ1(x, qn)
ϑ4(x, qn)

.

Now dividing equations (21,20), we obtain the identity:

sn

(
2nK(n)x

π
, k(n)

)
= (−1)

n−1
2

√
kn

k(n)

n−1∏
m=0

sn

(
2K(x + 2mπ

n )
π

, k

)
,

a general formula for transformation of elliptic functions, the same as one that I first established.
Other real and imaginary transformations may be associated to the number n in a similar manner.

Since the elliptic functions are easily defined in terms of the theta functions, one might in turn
attempt to express theta functions in terms of elliptic functions. This is accomplished by integrating
equation (1):

(22) log
ϑ4(x, q)
ϑ4(0, q)

=
∫ φ

0

KE(φ)− EF(φ)
K∆(φ)

dφ

where φ = am2Kx
π . From equation (2), we obtain:

(23) log
ϑ4(0, q)
ϑ4(2α, q)

=
∫ A

0

2k2 sinA cos A ∆(A) sin2 φ dφ

(1− k2 sin2 A sin2 φ) ∆(φ)
− 2F(A) (KE(A)− EF(A))

K

where A = am2Kα
π , as above.

Let us move on to other matters. Letting ω = − log q = −ıπτ , we obtain the Fourier series
expansions:

ϑ1(x, q) = −2
∞∑

n=1

(−1)ne−(2n−1)2ω/4 sin(2n− 1)x,

ϑ4(x, q) = 1 + 2
∞∑

n=1

(−1)ne−n2ω cos 2nx.
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From these expansions, we obtain the partial differential equations

∂2

∂x2
ϑ1(x, q) = 4

∂

∂ω
ϑ1(x, q),(24a)

∂2

∂x2
ϑ4(x, q) = 4

∂

∂ω
ϑ4(x, q).(24b)

Among these two solutions ϑ1 and ϑ4 to the partial differential equation2

∂2z

∂x2
= 4

∂z

∂ω
,

we have the relations:

ϑ1(x, q) = ıe−ıx−ω/4ϑ4(x− ıω
2 , q)

ϑ4(x, q) = ıe−ıx−ω/4ϑ1(x− ıω
2 , q)

In general, if z = z1(x, ω) is a solution to the differential equation
∂2z

∂x2
= 4

∂z

∂ω
, then it is easily

verified that there is a second solution

z = z2(x, ω) = exp(−ıx− ω/4)z1(x− ıω/2).

Now let

u :=

√
2k′K

π
= ϑ4(0, q)

=1 +
∞∑

n=1

(−1)nqn2
,

v :=

√
kk′
(

2K
π

)3

= ϑ1(π
2 , q)ϑ4(π

2 , q)ϑ4(0, q)

=−
∞∑

n=1

(−1)n(4n− 2)q(2n−1)2/4.

Applying the differential equation, we obtain the expansions:

ϑ1(x, q) = 1
2

∞∑
n=0

(2x)2n+1

(2n + 1)!
dnu

dωn
,(25)

ϑ4(x, q) =
∞∑

n=0

(2x)2n

(2n)!
dnu

dωn
,(26)

If we divide these two equations, we obtain:

(27) sn
2Kx

π
=

1
2
√

k

∞∑
n=0

(2x)2n+1

(2n + 1)!
dnu

dωn

∞∑
n=0

(2x)2n

(2n)!
dnu

dωn

,

2i.e. the heat equation
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where values of
dnu

dωn
and

dnv

dωn
are obtained from the equation

(28)
dω

dk
=

−2

k(1− k2)
(

2K
π

)2 ,

easily deduced from known equations.
Mr. Poisson, in his researches into definite integrals, determined a number of properties of

ϑ4(x, q). The delicate methods of this noted geometer find delightful verification in the theory of
elliptic functions. For example, in issue 19 of the Journal of the Polytechnic School, Mr. Poisson
established the following identity:

x−1/2 =

1 + 2
∞∑

n=1

e−n2πx

1 + 2
∞∑

n=1

e−n2π/x

=
ϑ4(x,−q)

ϑ4(x−1,−q)

If we let x = K′

K and transform k 7→ k′ =
√

1− k2, then we transform x 7→ K
K′ = x−1. Starting

with √
2K
π

= 1 + 2
∞∑

n=1

qn2

= 1 + 2
∞∑

n=1

e−n2πx

and transforming k 7→ k′, we obtain√
2K′

π
= 1 + 2

∞∑
n=1

e−n2π/x.

Dividing these two results immediately gives Mr. Poisson’s identity.
We return to the theory of transformation. If modulus k is transformed into modulus λ of order

n, then we obtain an algebraic relation between k and λ whose degree in either variable is the sum
of the divisors of n. Letting q 7→ q

a′
a where aa′ = n in the equation3:

√
k =

ϑ1(π
2 , q)

ϑ4(π
2 , q)

=

2
∞∑

n=1

q(2n−1)2/4

1 + 2
∞∑

n=1

qn2

.

Let
dy√

(1− y2)(1− λ2y2)
=

M dx√
(1− y2)(1− λ2y2)

be the differential equation satisfied by a rational expression of y in x, in which x appears with
degree n: we can write M as a rational function of k and λ by means of the general formula:

M2 =
n(k − k3)dλ

(λ− λ3)dk
.

3The expression as given in [1] contains a typesetting error: the term involving q9 in the denominator is omitted.
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Eliminating λ using the modular equation, we obtain an equation of the same degree between k
and M. These equations between k and M display a property worth noting, namely, if n is a
prime number, then we can express half the values of

√
M by linear combinations of the other half.

Letting M, M′, M′′, . . .M(n) : denote the roots of the degree (n + 1) equation between M and k,
we obtain:

√
M = A

√
(−1)

n−1
2 n,

√
M′ = A + A′ + A′′ + A′′′ + . . . + A

n−1
2 ,

√
M′ = A + αA′ + α4A′′ + α9A′′′ + . . . + α(n−1

2 )2

A
n−1

2 ,
√

M′′ = A + βA′ + β4A′′ + β9A′′′ + . . . + β(n−1
2 )2

A
n−1

2 ,
. . .

where α and β are the imaginary roots of xn = 1. Then we can write the square roots of the (n+1)
roots by linear combinations of n+1

2 other quantities. This gives the theorem stated, one of the
most important in algebraic theory of transformation and division of elliptic function. We obtain
the same theorem by the relationship between equations giving λM, λ′M, etc. in terms of k. A
similar expansion for n = 5, x = λM is:

x6 − 10kx5 + 35k2x4 − 60k3x3 + 55k4x2 − [26k5 + 256(k − k3)]x + 5k6 = 0.

Setting x = y + k, this reduces to:

y6 − 4ky5 − 256(k − k3)(y + k) = 0.

Using elliptic functions, we can solve a problem posed by Euler in connection with Fermat’s
theorem which states that every non-negative integer is the sum of four squares. The solution is to
show that the fourth power of a generating function of the form

∞∑
n=0

anqn2

contains every power of q. Specifically, I showed that(
2K
π

)2

=

(
1 + 2

∞∑
n=1

)4

= 1 + 8
∞∑

n=1

nqn

1 + (−q)n

= 1 + 8
∞∑

n=1

qn

(1 + (−q)n)2

= 1 + 8
∞∑

n=1

σ1(2n− 1)

(
q2n−1 + 3

∞∑
m=1

q2m(2n−1)

)
where σ1(n) is the sum of the divisors of n. Fermat’s four square theorem follows as a corollary.
In addition, we obtain theorems about the numbers of representations of a given number in terms
of four squares from this and similar formulas4. (A similar result was stated in [3].) A careful

4For other examples, see Jacobi §40 of Jacobi’s Fundamenta Nova or Smith [6] §127. Jacobi’s formula for
(

2K
π

)2

tells us that, if m is the sum of those divisors of a positive integer n which do not have 4 as a factor, then 8m is the
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examination of the combinatorial algorithm which gives rise to these striking results leads to new
methods in number theory.

Elliptic functions differ from ordinary transcendental functions in a fundamental way; specifi-
cally, they contain everything periodic in analysis.5 While trigonometric functions have one real
period and exponential (hyperbolic) functions have one imaginary period, elliptic functions have
two fundamental periods:

sn(u + 4K, k) = sn(u + 2ıK′, k) = sn(u, k).

Moreover, it is easy to show that an analytic function cannot have more than two fundamental
periods, either one real and the other imaginary, or both imaginary. This latter case corresponds
to an imaginary modulus k. The ratio K′

K of the two periods determines the modulus: k may be
found using equations (15) and (17).6 It might be desirable to introduce this ratio as a modulus in
place of the invariant7 k. With respect to this quotient, I have found that:

Theorem. k is fixed under a transformation of K′

K to

cK + ıdK′

ı(aK + ıbK′)
=

KK′ − ı(acK2 + bd(K′)2)
a2K2 + c2(K′)2

where a, b, c, d are integers, a odd, c even, such that

det
(

a b
c d

)
= 1.

a noteworthy theorem, one which may be considered one of the fundamental theorems of elliptic
function theory – equally applicable to a much-studied class of multiple integrals of arbitrary order.
I made an attempt at studying this thorny matter in a short note [2] in volume 2 of your journal.

You see, sir, that the theory of elliptic functions is a massive body of research whose tentacles
reach most of algebra, the theory of integration and number theory. What a glorious accomplish-
ment for the noted author of the Traité des fonctions elliptiques,8 to have created this beautiful
theory and to have kindled this flame for posterity.

Königsberg, 21 July, 1828.
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