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2. Introduction

Counting 2 as the first prime, we denote by (x), (x), and (x), respec-
tively, the number of primes =< x, the logarithm of the product of all primes
=< x, and the logarithm of the least common multiple of all positive integers
-< x; if x < 2, we take v(x) O(x) (x) 0. We also let pn denote the
nth prime, and (n) denote the number of positive integers __< n and rela-
tively prime to n. Throughout, n shall denote a positive integer, p a prime,
and x a real number. We shall present approximate formulas for (x),
(x), (x), pn, (n), and other functions related to prime numbers.

In 1808, on the basis of attempting to fit known values of r(x) by an em-
pirical formula, Legendre coniectured an approximation very similar to that
given below in (2.19). In 1849, again on the basis of counts of the number
of primes in various intervals, Gauss communicated to Encke a coniecture
that in the neighborhood of the number x the average density of the primes
is 1/log x. On this basis, if one should wish an estimate for the sum of f(p)
over all primes p -< x, the natural approximation would be
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(2.1) ’ f(P) .. fx f(y) dy
<=x log y

Consequently, one would presume the following approximations"

(2.2) r(x) 1-----f dy
_<_ log y

(2.3) 0(x) log p dy -- x,

(2.4) 1 ,fx dy loglogx-l-B,
_<_ y log y

(2.5)

(2.6)
II

log / log x + E,dyP
p .2 y

exp cl(a) c()
a v<_-x (log x)’

where a is a real constant, usually taken to be unity.
In (2.4) we have indicated a "constant of integration," B, whose value is

taken to be
lim __< 1/p log log z}.

Because this limit exists, the absolute error in (2.4) tends to zero as x tends
to infinity. In (2.5) and (2.6), we have indicated constants E, cl(a), nd
c(a) for analogous reasons. In (2.2) nd (2.3), no constants are indicated
because the limits to which they would correspond do not exist.
The validity of the approximations (2.2) through (2.6) was rigorously

established iust before the turn of the century by Hadmrd and de la Valle
Poussin. A very excellent account of these matters is given in Ingham [6],
together with extensive references to the literature.
From Ingham [6], we can get alternate expressions for B, E, and c(1) as

follows:

(2.7) B C -t-- {log [1 (l/p)] + (l/p)},

(2.s) E C n= (log p)/pn,

(2.9) c(1) e-c,
where C is Euler’s constant. We find (2.7) and (2.9) on pp. 22-23 of Ing-
ham [6], and cn derive (2.8) from a formula near the top of p. 81. Approxi-
mate numerical values re"

B 0.26149 72128 47643,

(2.11) E 1.33258 22757 33221,
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(2.12) C(1) 0.56145 94835 66885,

(2.13) 1/C(1) 1.78107 24179 90198,

(2.14) C(2) 0.83242 90656 62.

Let us define the logarithmic integral li(x) by

(2.15) li(x) El(log x),

where El(y) is the exponential integral, defined by

(2.16) Ei(y) lim + e----
Then

li(x) li(2).dy(2.17)
logy

Consequently, in place of (2.2), it is common to use li() as an approximation
for (). This is more convenient than (2.2) because El(y) has been exten-
sively tubulated; a convenient tabulation is given in the W.P.A. Tables
[18], in which the reder should note the supplementury Table III at the end
of Vol. II.

If we use two terms of the asymptotic expansion for li(x), we get the follow-
ing convenient approximation"

(2.18) -(x) = log log

Using a closer approximagion for li(z) gives ghe sharper resulg"

(2.19) (x)
log x 1"

From this, we see that a suitable approximation for Pn is given by

(2.20) p n(log n + log log n 1).

Much work has been done in estimating the orders of magnitude of the
errors in the various approximations listed above. A classic result appears
as Theorem 23 on p. 65 of Ingham [6] in the form

(2.21) (x) li(x) + 0( exp {-a(log ):}),
where a is a positive bsolute constant. This means that there are positive
ubsolute constants a, b, and X such that for x X

(2.22) ]z(x) li(x) < bx exp {-a(log )}.
Improvements of this sort of result continue to appear. The sharpest

known, given in Vinogradov [17], is

(2.23) v(x) li(x) + O(x exp {-a(log x)/}).
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Undoubtedly this is not the best possible result, but the precise behavior of
r(x) li(x) depends on the location of the zeros of the Riemann zeta func-
tion, and cannot be determined until we have more precise information about
them than we have now. A discussion of this point appears in Chap. IV of
Ingham [6].
Even in our present ignorance about the zeros of the zeta function, it can

be shown that li(x) alone cannot be a wholly satisfactory approximation to
r(x). Specifically, it has been shown that there is a sequence of values of x,
tending to infinity, at which alternately

(x) li(x) > xl/2/1Og X

and
(x) li(x) < xl/2/log x.

Indeed, Theorem 35 on p. 103 of Ingham [6] states a significantly stronger
result. An analogous result for O(x) x follows from Theorem 34 on p.
100 of Ingham [6] by means of the relations

(2.24) k(x)

(2.25) O(x) Zn=l p(n)b(xl/n).

Each of these summations is in fact only finite, since the summands become
zero as soon as n > (log x)/(log 2). The first of these equations is derived
on p. 12 of Ingham [6], and inversion of the first gives the second, in which

is the MSbius function defined on p. 567 of Landau [7], vol. 2.
Once one has a good estimate for r(x) li(x), one can get an approxima-

tion for sums of functions of primes as follows. Using the Stieltjes integral,
one has ., f(p) f(y) dr(y).

p_

f’(y)r(y) dy

Integration by parts gives_, f(p) f(x)(x)

f’(y) li(y) dy f
Then integration by parts gives

(2.26)

_, f(p) f f(y) dy
_<_ log y

f’(y) r(y) ]i(y)} dy.

-t- f(2) li(2)

+ f(x){r(x) li(x)}

which is the precise version of (2.1).

f’(y){.(y) ]i(y)/ dy,

If the integral in (2.28) below con-
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verges, we can rewrite (2.26) as

<__ log y
(2.27)

-t-f(x)/r(x)- li(x)}-t- f’()/’() li()} d,

where K is the eonsgant given by

(2.28) g] f(2) li(2) f’(y){.(y) li(y)} dy.

Using these, we can get sharper forms of (2.3) through (2.6). Thus,
from (2.21) und (2.26), we get

(2.29) O(x) x + O(x exp {-a(log z) /} ).

From (2.21) and (2.27), we get

(2.30) _,,<= lip log log x 4- B 4- 0(exp {-a(log x) /} ),

(2.31) _<_ (log p)/p log x 4- E 4- 0(exp {-a(log x) 1/}).
From (2.30) we proceed as in (2.6) to get

,<_<_ (log x) 4- 0(exp {-a(log x)}).

From (2.29) and (2.24), one can get a formula for (x) analogous to (2.29).
By starting from (2.23) rather than (2.21), one can get even sharper results
than (2.29) through (2.32).
Though results like those above are interesting, and are difficult to prove,

they are of little use for getting dependable numerical approximations unless
values of a, b, and X in (2.22) are furnished; this is seldom done. In Rosser
[12], explicit bounds were presented for the errors in our approximations.
More recently, much better bounds have been obtained by using modern
computing machinery and taking advantage of new information about the
zeros of the zeta function. These results will be stated in the early part of
the present paper, with the proofs being mainly withheld until the later
sections.

3. Widely applicable approximations
For a very sharp approximation, one must either use complicated formulas

or be satisfied with validity over a limited range. In this section, we shall
list approximations which combine the advantages of being reasonably simple,
reasonably precise, and valid for nearly all values. Note that Theorem 1
below will replace (2.18) by closely related and specific inequalities, while
Theorems 2-7 will do the same for (2.19), (2.20), (2.3), (2.4), (2.5), and
(2.6) respectively. Theorem 8 is a variant of Theorem 7 which is sometimes
more convenient.
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THEOREM 1. We have

x (1- 1 ) <r(x) for59 < x,(3.1)
log x 2 log------

x( 3) for l<x.(3.2) (x) <l-ogx 1 +21ogx
THEOREM 2. We have

(3.3) x/(log x 1/2) < (x) for 67 _-< x,

(3.4) r(x) < x(log x ) for ea/2 < x

(and hence for 4.48169 <_- x).

COROLLARY 1. We have

(3.5) x/log x < v(x) for 17 <= x,

(3.6) (x) < 1.25506 x/log x for 1 < x.

COnOLLAnY 2. For 1 < x < 113 and for 113.6 =< x

(3.7) (x) < 5x/(4 log x).

COROLLARY 3. We have

(3.8) 3x/(5 log x) < r(2x) (x) for 201/2 =< x,

(3.9) 0 < r(2x) r(x) < 7x/(5 log x) for 1 < x.

For the ranges of x for which these corollaries do not follow directly from
the theorem, they can be verified by reference to Lehmer’s table of primes
[10]. A similar remark applies to all corollaries of this section unless a proof
is indicated.
The inequality (3.8) improves a result of Finsler [3]. The left side of

(3.9) is just the classic result, conjectured by Bertrand (and known as
Bertrand’s Postulate) and proved in Tchebichef [14], that there is at least
one prime between x and 2x. The right side of (3.9) gives a result of Finsler
[3], with Finsler’s integral n replaced by our real x. Finsler’s elementary
proofs are reproduced in Trost [15] on p. 58. The relation (3.12) below
states a result of Rosser [11].

THEOREM 3.

(3.10)

(3.11)

COROLLARY.

(.12)

(.1)

We have

n(log n + log log n -) < Pn

p, < n(log n -+- log log n 1/2)

We have

n log n <: Pn

p, < n(log n - log log n)

for 2-<n,

for 20 <__ n.

forl <_ n,

for6 <__n.
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THEOREM 4.

(3.14)

(3.15)

CoaoaY.

(3.16)

THEOREM 5.

(3.17)

We have

x(1 1/(2 log x)) < O(x)

O(x) < x( + /(2 og x))

We have

x(1 1/log x) < O(x)

We have

log logx +B- 1/(2logsx) < _<xl/p

(3.18)

COROLLARY.

(3.19)

(3.20)

THEOREM 6.

(3.21)

(3.22)

COROLLARY.

(3.23)

(3.24)

THEOREM 7.

(3.25)

(3.26)

COrOllArY.

(3.27)

THEOREM 8.

(3.28)

(3.29)

COROLLARY 1.

(3.30)

_,
<= 1/p < log log x - B -- 1/(2 log x)

We have

log log x <
_

1/p_,
<= lip < log log x + B -+- 1/log x

We have

log x + E 1/(2 log x) <

_
(log p)/p

_<_ (log p)/p < log x + E + 1/(2 log x)

We have

<__(logp)/p <logx-E+ 1/logx

=< (log p)/p < log x

We have

e
l--

log z

II (1-- p
1-)p<__x

We have

e-C (1
We hve

2 log

< 1 1 -I" 21og.z

e (logx) 1--2logsx p--1

II P <ee(logx) 1-t-21ogsx_<_p 1

We have

( 1)< e(log ) + o x

for 563 _<_ x,

for 1

for41 <=x.

for 1 <: x,

for 286 __< x.

for l < x,

for l

for 1 < x,

for 319 -< x.

for 32 _<_ x,

for

for 285 _<_ x,

for 1

for1 <x.

for 1 < x,

for 286 -< x.

for1 <x.
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COROLLARY 2. We have

(3.31) II P < eC E 1
forl <__ x.,_ p 1 1< n

THEOREM 9. We have

(3.32) O(x) < 1.01624 x for 0 < x.

For better bound for 0(x) when x _<_ 10s, note Theorem 18 below.

THEOREM 10. For d <-_ x, we have cx < O(x) for each of the following pairs
of values of c and d"

c .00.0,01.0__01 .01.0o,.0l .o1.01.0_ -1"-1"1";";
d 7481 53811 34571 2657 1481 14331 1427[ 853 809l 599[ 557[ 3491 227[ 1491 101

THEOREM 11. Let

515
and e(x) (log x) exp {-- (log x)/R}R

(546-)
Then we have

(3.33) {1 (x)} x < O(x) (x) for 2 x,

(3.34) O(x) (x) < {1 + e(x)} x for 1 x.

An approximate value for R is

R 17.51631.

The quotient (x)/x takes its maximum at x 113, and

(x) < 1.03883 x for 0 < x.

The quotient {(x) O(x)}/x1 tales its maximum at

THEOREM 12.

(.35)

THEOREM 13.
X 361, and

(3.36)

THEOREM 14.

(3.37)

(3.38)

COROLLARY.

(3.39)

(x) 0(x) < 1.42620 x1/2

We have

0.98 X
1]2 < (X) (X)

b(x) 0(x) < 0(x1/2) + 3x1/3

We have

b(x) O(x) < 1.02 x1/2 + 3x3

Proof. Use Theorem 9.

THEOnEM 15. For 2 <_ n

(3.40) 1 - 1/(n- 1) __< n/(n);

forO <x.

for 121 __< x,

for 0

forO < x.
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also for 3 <= n

(3.41)
except when

in which case

n/4(n) < ec log log n -t- 5/(2 log log n)

n- 2230 92870- 2.3.5.7.11.13.17.19.23

(x) < i(x)

We have

(4.3) x -/li(x) (x)} log x < O(x) for e <= x <= l0

(4.4) (x) < x 2x1/2 + {r(x) li(x) +li(xl/2)}logx fore <= x <= l0

By use of Theorem 17 and the Rand table of primes [1], one can get quite
sharp estimates of 0(x) for e =< x =< l0s. However, it is usually adequate
to use the more convenient but less precise results below.

THEOREM 18. For 0 < x <_ l0

(4.5) x 2.05282 x1/ < O(x) < x.

THEOREM 19. For 0 < x <= 1420.9 and for 1423 =< x __< l0

(4.6) x- 2 x1/ < O(x).

The coefficient in (4.5) corrects a transposition of digits in Theorem 6 of
Rosser [12].
THEOREM 20. For 1 < x <-- l0

(4.7) log log x + B < p<= lip < log log x + B + 2/(x1/ log x).

THEOREM 21. For 0 < x <_ l0

(4.8) logx + E < p__< (logp)/p < logx-t- E 2.06123/x1/.

(4.1) li(x) li(x1/2) < (x) for 11 _<_ x =< l0s,
(4.2) for 2 <= x <= l0

THEOREM 17.

THEOREM 16. We have

(3.42) n/4(n) < ec log log n + 2.50637/log log n.

In (3.40), equality is attained whenever n is a prime. Thus, by taking n
to be a large prime, we can make n/(n) arbitrarily close to unity. It is
shown in Landau [7], pp. 217-219, vol. 1, that for each positive e there are
an infinity of n’s for which

(ec- e)log log n < n/(n).

We do not know if there are an infinity of n’s for which

ec log log n <= n/4,(n).

4. Special approximations for limited ranges
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THEOREM 22. For 0 < x < 113 and for 113.8 <__ x <= 10

(4.9) __< (log p)/p < log x + E - 2Ix1/2.

THEOREM 23. For 0 x <- l0

(4.10) ec log x < ]I_ P/(P 1) < ec log x 2eC/x1/2.

THEOREM 24. We have

(4.11) x1/ < (x) O(x) for 121 __< x __< 1016

(4.12) (x) O(X) < X
1/2 -Jl- 3X1/ for 0 < x <= 1016.

One immediately wonders if the results of Theorems 20-23 could be valid
for all x. It is known that each of (4.1), (4.2), and (4.5) fails infinitely
often for large x, and indeed each side of (4.5) fails infinitely often (see
Theorems 35 and 34 on pp. 103 nd 100 of Inghm [6]). Perhnps one cn
extend these results to show that ech of (4.7) through (4.10) fails for large
x; we hve not investigated the matter.
Theorem 18 gives sharp bounds for O(x) for 0 < x <__ 10s. For larger

values of x, sharp bounds for O(x) can be obtained by use of Theorem 14 and
its corollary provided sharp bounds for k(x) are known. For 10 =< x =<
5000e sharp bounds for k(x) can be obtained from our Table I, in which we
tabulate against b values of such that for e _<_ x

(-)x<(x) <(+)x.

The values of m listed pertain to the computations by which Table I was
established, all of which will be explained later.

Finally, Theorem 11 can be used to get close approximations to both (x)
and 0(x) for large x beyond the range of existing tables. Although Theorem
11 is valid for small values of x as well as large, for x below about e3 it gives
poorer estimates for 0(x) than can be obtained from Theorems 4, 9, 10, 18,
and 19. From els’4 to e4s, Theorem 11 gives poorer estimates than can be
obtained from Table I with the help of Theorem 14.
We can use our sharp estimates for 0(x) to get sharp estimates for other

functions depending on primes. Using the Stieltjes integral, we can write

f(p) f f(Y) dO(y).E
_<_ log y

An integration by parts gives

,_<_ logx \iog dy.

Alternatively, one can derive (4.13) by use of Theorem A on p. 18 of Ingham



[6].

(4.14)

From (4.13), as in the derivation of (2.26), we get

f 2f(2)f(p) f(y) dy
__< log y log 2

f(x) {() x} f+ log x

For suitable f, we can write (4.14) as

f(P)
c[ f(y) dy + LfF_,

_<_ J2 log y

f(x) {O(x) x}+ log x

(4.15)

where Lf is the constant given by

(4.16) L/
2f(2) c

/log 2 Jo.

From (4.13) we get

(4.17)

{O(y) y}- \log

d (f(y)y) dy,lO(Y) Y}- \log

{O(y) y} - \log/dy.

-(x) () +
c
/ dy

log x y log y

(4.18) i (x)
_< p x log x

5-’ log p O(x)(4.19)
p<__ p x

From (4.15) we get

1

(4.20)

f* O(y)(1 -+- log y)+ dy,y log y

f* (y) dy+ y.

log logxq-B q- () x
x log x

{0(y) y}(1 + log y)
dy,y log y

(4.21) log p
log x -t- E + O(x) x /i O(y) y dy.

__< p x y
To prove (4.20), it suffices to show that in this case L] log log 2 B;
to show this, we let x -- in (4.15) and use Theorem 11 and the definition
of B. The proof of (4.21) is similar.

5. Tabular and computational results, and proofs
derived therefrom

The well-known table of primes, Lehmer [10], lists all primes less than 10
in such a fashion that one can easily obtain the corresponding value of
r(x) + 1; since Lehmer takes unity to be the first prime, his count of primes
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differs by unity from ours. Just recently the Rand Corporation has prepared
a list of primes, published on microcards in Baker and Gruenberger [1], giv-
ing all primes up to slightly beyond 108 Within the large range of these
tables, one can read off exact values of r(x) and p. Their count agrees with
Lehmer’s rather than ours.
By use of Lehmer’s Table, Rosser verified Theorem 16 and the right half

of (4.5) for x __< 106. An account of his methods is given in Rosser [12].
By the same methods, these results were extended to 107 in the first major
computation cited in Section 1.
We turn next to the calculations required to establish (2.10) through (2.14).

The values for c(1) and 1/c(1) given there were computed from (2.9) and
the known value of C. The values for B and c(2) given in (2.10) and (2.14)
have been taken from pp. 43 and 44 of Rosser [11]. At the end of the foot-
note on p. 43 of this reference, there is given a twenty-four-decimal value of
C B; this value corrects the slightly erroneous value of B C given in
Table I of Gram [5]. Incidentally, Gram reproduces M:errifield’s incorrect
value of ] p-3 in his Table I; a correct value is given on p. 249 of Davis [2].
To determine the remaining quantity, E, we use the relation

’(s)/(s) (log p)/(p8 1) rl (log

which is given near the bottom of p. 17 of Ingham [6].
forn > 1

From this we obtain

(5.1) (log p)/p’ Em=l (m) ’(mn)/(mn).

Substituting this into (2.8) gives

(5.2) E C = t(m) ’(m)/(m).

We first computed i"(n) by using an electronic computer to sum the first
500 terms of the series

"(n) ]= (log m)/m’;
the remainder of the series was computed by the Euler-Maclaurin sum
formula. As a cheek, this was repeated with the first 1000 terms. Using
the values of i’(n) given on p. 244 of Davis [2], values of

’(n)/(n) and ] (log p)/pn

were computed for 2 =< n -< 56 by using (5.1). These, together with the
values of -i"(n) are listed for 2 =< n =< 29 in Table IV. In this table the
values given for -’(n) are in error by less than 10-17. Division by (n)
could cause slightly greater errors in -’(n)/(n). As we used seventeen-
decimal values in (5.1), the errors in p-n log p could be a bit greater. For
n > 29, the three functions tabulated do not differ in the first seventeen
decimals, and each is given to better than seventeen decimals by

(log 2)/2 + (log 3)/3 n.
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Using (2.8), we got the approximation

E -1.33258 22757 33220 87

which we checked by (5.2).
Incidentally, our values of -’(n)/(n) check the seven-decimal values

given in Walther [16].
With vMues for B, E, und e-c now estublished, other computations could be

undertaken. The second major computation cited in Section 1 was the
tabulation by Rosser and Walker of many functions of primes for x -< 16,000.
This verified Theorems 1-10 and their corollaries in this range, with the ex-
ception of Theorem 3, which was established for p _< 16,000. This computa-
tion also verified Theorems 18-23 for x -<_ 16,000.
The third major computation cited in Section 1 was the tabulation by Appel

nd Rosser of mny functions of primes for x _-< 10s. This established
Theorems 16 and 18-23 for 313 _-< x __< 10s, which completed their verifica-
tion. A discussion of this computation, together with prtial tabulation
and many more details can be found in a report written by Appel and Rosser
[19].
Theorem 17 is an immediate consequence of Theorem 16 as a result of

Lemmas 5 and 6 of Rosser [12]. Thus Theorems 16 through 23 are es-
tablished.

In Table II, at the end of this paper, we have listed values of t(x) and
other functions selected from the Rosser-Walker tabulation. If an isolated
value is desired in the range x -< 16,000, it can be readily computed by working
from the nearest entry in Table II; it can be checked by working from the
entry on the other side. If numerous random values are desired, it is probably
easier to generate an entire table on one of the modern very fast computers,
using the entries in Table II to check key values. Other values for comparison
are available in the report by Appel and Rosser [19].
For more limited ranges, one can derive values of some functions from

tables already in the literature. Thus in Glaisher [4] is given a seven-decimal
table of

f(x) II<=, (1 1/p)

and its common logarithm for 2 _<_ x -< 10,000. By comparison with the
Rosser-Walker tabulation, we verified that the Glaisher table is quite reliable.
Round-off errors are common in the function values, but we found only four
cases where the listed function value is in error by more than one unit in the
last place. The correct values there are as follows"

f(4271) 0.0670040, f(9397) 0.0613076,

f(8609) 0.0619246, f(9883) 0.0609460.

In all these cases, the logarithmic values given were accurate to within round-
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off errors. The last column of our Table II gives selected values of 1/f(x)
to ten decimals.

In Gram [5] is given an eight-decimal table of (x) for x =< 2000. The
eighth decimal is quite unreliable, but no entry is in error by as much as
10-7. From this, one can readily compute values of 0(x) for x =< 2000 by
using our Table III, which gives the values of (x) 0(x) for x < 50,653.
The arguments x are those prime powers pr having r >= 2, so that the tabulated
function is constant between entries. By means of Table III one can also
compute (x) from the values of 0(x) given in Table II up to x 16,000.
We now turn to Theorems 12-14, 24. We first take note of the following

result from pp. 90-91 of Landau [7], vol. 1, proved by adapting the elementary
derivation of Tchebichef [14].

THEOREM 25. For 1 <- x

(5.3) (x) -< (x) < 1.2 ax + (3 log x + 5)(log x + 1),

where a denotes the constant

v log 2 + log 3 + - log 5 0.92129 ...,
according to the definition on p. 88 of Landau [7], vol. 1.

Using (5.3) with Theorem 18 gives the following weakened form of Theorem
9"

(5.4) (x) < 1.11 x for 0 < x.

Using values of O(x1/2) from the Rosser-Walker computation, we verified
(3.38) for x < 50,653 by using Table III. For 50,653 -<_ x < 1024, one can
verify (3.38) by (2.24) and the right side of (4.5) to do this, we proceed by
cases such as 2 __< x < 2N where M and N are conveniently chosen integers.
Finally, for 1024 <__ x, (3.38) holds by (2.24) and (5.4). Thus (3.38) has
been completely established. From it, by (5.4) one can infer the following
weakened form of (3.39)"

(5.5) (x) (x) < 1.11 x/2 -- 3x/ for 0 < x.

As (3.38) and the right side of (4.5) imply (4.12), we cn complete the
proof of Theorem 24 by establishing (4.11). This is readily done for 121 _<_
x < 50,653 by means of Table III. By using Theorems 18 and 19 with (2.24),
we can finish the proof of (4.11) nd hence of Theorem 24.
By comparison with Gram’s Table [5] of (x), Theorem 12 was verified

for x =< 2000, nd it ws ascertained that in this rnge the maximum value
of (x)/x lies between 1.03882 and 1.03883. Thus one can complete the
proof of Theorem 12 by proving that (x) _<_ 1.03882 x for 2000 =< x. This
follows for x < 50,653 by Theorem 18 and Table III. For 50,653 -< x _-< 10
it follows by Theorem 18 nd (4.12). It will follow for 11 greter x by Table
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I as soon as we have justified the values in this table, which we will do in the
next section.
We can verify Theorem 13 in the range 0 < x < 50,653 by reference to

Table III. It then suffices to verify b(x) (x) -<_ 1.42619 x1/ for 50,653 __<
x. For 106 _<_ x, we infer this by (5.5). For x < 106 we use (2.25); the
facts that h(Y) 0 for y 2 and that is monotone let us conclude

(x) (x) () + () + (x) (x)

+ (x") (x") + (x) + (x")
/(XTM) /(X1/15) + ](X1/17) -- /(X1/19)

__< (x") + x1/) + t(x") + (x")
< 1.04 (x1/2 + x1/3 -t- x/5 -t- x1/1)

since (3.35) holds for x _<_ 10s. This suffices to complete the proof.
At this point, therefore, we have established (2.10) through (2.14), Theo-

rems 16 through 24, Theorem 12 except for 10 < x, Theorem 13, and (3.38)
of Theorem 14. We have also verified Theorems 1 through 10 and their
corollaries for x __< 16,000 or for pn <_- 16,000.

6. Sharpening of some results of Rosser, with application to
several proofs

In the preceding section, we carried our proofs as far as is practicable without
appealing to very deep results. From here on, we shall be mainly concerned
with invoking certain deep results to validate Table I and complete the proofs
of the results stated in Section 3. Space does not permit us to give proofs in
full, so that we shall assume that the reader is quite familiar with Ingham
[6] and Rosser [12], from which we shall use notation and results with a
minimum of reference.
The most significant sharpening of results from Rosser [12] arises from the

fact that it is now known that the first 25000 zeros of the zeta function have
real part equal to 1/2, as shown in Lehmer [8] and Lehmer [9]. This enables
us to replace the A on p. 223 of Rosser [12] by A e9"99. We do not now have
N(A) F(A), which will make a slight change in a key formula, as we note
below.

Observing that

322 W 546 cos -t- 329 cos 2 W 130 cos 3 - 25 cos 4
2(1 + cos ) (3 + 10 cos )2 >__ 0,

we can modify the proof of Theorem 20 of Rosser [12] to get a proof of

THEOREM 26. For A <- ,, we have < 1 1/ R log /).

The R here is that defined in Theorem 11. In other places, as here, it re-
places the number 17.72 appearing in Rosser [12]. Thus, we are conforming
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with the notation of Rosser [12] when we temporarily abrogate the usual
denotation of (n) and define

--m--I e-(logx) (Rlogs,)(6.1) (-y) (m, x, /) 5’

However, for the purposes of the next theorem we consider (6.1) as de-
fining (,) for arbitrary positive R.

THEOREM 27. If (’y) is defined as in (6.1) with m and R positive numbers,
if 2 <= K, and if 0 <= log x __< (m - 1 R log K, then

Y dy,(6.2) (,) < 2R(K)(K) + Q (y) log

where

1(6.3) Q -!-

COROLLARY.
0 < m, and

(6.4)

then

0.137 log K 0.443
K log K log (K/2z)

Proceed as in the proof of Lemma 18 of Rosser [12].

If in (6.1) we take R to be the R of Theorem 11, and if A <= K,

0 _-< log x < 1748(m -4- 1),

Y dy.(6.5) ’ (,) < 2R(K)O(K) + 0.1592 O(y) log

Proof. As we are here using the R of Theorem 11, (6.4) verifies the final
hypothesis of Theorem 27. In (6.5), the coefficient in front of the integral
is got by taking K e9’99 in (6.3), which is permissible since e9"99 A =< K.

In Rosser [12], in the situation corresponding to taking K A in the corol-
lary, the coefficient 2 did not appear in the first term on the right of (6.5).
This is because N(A) F(A) in that paper. Except for that, we now pro-
ceed as in the proofs of Lemma 19 and Theorem 21 of Rosser [12] to derive

THEOREM 28. If m is a positive integer,

1 < k loga < 1748
mT1 m 0.123’

0.0003647 1.298 m 0.1592/+)
--.3 mAa,llI
m}2+

and1 + ma < a, then for a x

x(1-)-.s4<(x) <x(l+)-log(1-x-).
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By taking a successively equal to e for the various values of b listed in
Table I, and using with these values the listed values of m, the values of e
listed in Table I were derived from Theorem 28. In particular, the value for
b 5000 was listed just as it was given by Theorem 28 despite the fact that
Theorem 28 gives a smaller e for b 4900, as listed in Table I. The bounds
used for kl, k2, and k3 are those given in Lemma 17 of Rosser [12]. Bounds
for larger m were obtained by the trivial inequality

14 E [/--m-- K I’’--m-1
Now that we have justified Table I, we use it to complete the proof of

Theorem 12, as noted above.
Turning to Theorem 9, we verify it for x =< 10 by Theorem 18. For

10 =< x =< 1016, we have 0(x) < (x) x1/ by Theorem 24, and so verify
Theorem 9 in this range by Table I. Above 1016, we use Table I with the
trivial inequality 0(x) < (x).
We complete the verification of Theorem 10 for 16,000 -< x =< 10 by The-

orem 19. Above this, we use (5.5) with Table I.
As far as it furnishes bounds on 0(x), we verify Theorem 11 for x <= 101 by

comparison with values of 0(x) taken from the Rosser-Walker tabulation.
Now with e defined as in Theorem 11, we have e >= 0.625 for 2 =< x =< e9.
Thus we can complete the verification of Theorem 11 in this range by The-
orems 10 and 12. This puts us in the range of Table I. From here to e4s

we can proceed by using Table I with (5.5). We now complete the proof of
Theorem 11 as in the proof of Theorem 22 of Rosser [12], noting that by (5.5)
the difference between 0(x) and (x) is so small as to be more than allowed
for by the fact that various quantities do not actually attain the upper bounds
by which they are replaced in the proof.
We verify (3.37) for x -< 1016 by Theorem 24. For greater x, it follows by

(2.24) and Theorem 10. Thus we have completed the proof of Theorem 14.
For some of our later proofs we will need results that are sharper in certain

ranges than Theorem 4. We now state and prove several such results.

THEOREM 29 For 1451 < x < e375

(6.6) x(1 0.3) ( .0.!_
log < O(x) <x 1-t--log

THEOREM 30. For 809 < x < e57

( ((6.7) x 1 1] <0(x) <x 1-4-1ogx].
THEOREM 31. For 569 =< x,

(6.8) x <1 (1-/ <0(x) <x 1A-logx].
For x _<_ 16,000, these are established by means of the Rosser-Walker tabu-
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lation. For 16,000 -<- x _<_ 108, these are established by Theorems 18 and 19.
For 108 < x < 1016 we use Theorem 24 and Table I. For 1016 < x < e5

we use the corollary of Theorem 14 and Table I. Finally, above e5 we use
Theorem 11.
From these, Theorem 4 is an easy consequence.

7. Proof of Theorems 1 through 3
We start with five lemmas. As their proofs are similar, we state all five

lemmas first before giving the proofs. We first make the definition

J(x,a) r(1451) 0(1451) x (og5 og + og
(7.1)

f( a)dy-i- 1-[-loY logy"

LEMMA 1. For e -<- x,

x((7.2) li(x) <logx 1-k 21ogx
LEMMA 2. ForlOs-<- xanda 0.31,

(7.a) J(z, a) <
lo lo

L . For e N z and a 0.47, he ineqalig (7.) i vlid.

L 4. Fore z,

(7.4) z/(log z ) < li(z) li(zn).
L . ForlO N zaed -0.47,

(7.5) x/(log x ) < J(x, a).

For each of these lemmas, the proof is in two parts. First, one verifies
that in the stated range of x, the derivative of the left side is less than that
of the right side. Second, one verifies that at the lower limit of x the left
side is less than the right side. To perform the needed calculations, one can
use the reduction formula

a dy b x f dy(7.6)
log+1 y log b log x t- log Y

to express the various integrals in terms of li(x) and elementary functions.
For x <- e1, one can get numerical values of li(x) from the tables of El(y)
given in [18]. Outside this range, one can appeal to the following result.

THEOREM 32. If m is a positive integer and m <= y <= m + 1, then

(7.7) 2_ ’ 1.06 -I- e E j 1)
3 m =1 y
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and

2( 2 )1/2 1.06
e(7.8) m+ 1 m+ 1 - (j- 1)

y
are lower and upper bounds respectively for Ei (y).

This is a consequence of equations (58), (68), and (69), and of Lemma 3
and Theorem 7 of Rosser [13].
We note the value (1451) 230 and the approximation 0(1451) 1396.4

taken from the Rosser-Walker tabulation.
We now turn to (3.2), which has already been established for x N 16,000

by the Rosser-Walker tabulation. By Lemma 1 and Theorem 16, we verify
(3.2) up to x 10s. We have by (4.17) that

(x) (1451)- (1451) + 0() + dy
log 1451 log x y log y

By Theorem 29, we can conclude v(x) < J(x, 0.31) if 1451 x e. So
by Lemma 2 we can infer (3.2) for l0 x e. In a similar way we com-
bine Lemma 3 and Theorem 31 to complete the proof of (3.2).

In a similar way, we combine Lemma 4 and Theorem 16 to verify (3.3) for
x 10s, and complete the verification by combining Lemmu 5 nd Theorem
31.
We get (3.1) from (3.3), and (3.4) from (3.2), by applying the inequality

x (1+ a ) x forea<x
logx logx <logx-a

in the two cases a and a .
As preliminaries for the proof of Theorem 3 we undertake the proof of (3.12)

and

(7.9) pn < n(log n -t- 2 log log n) for 4 -< n.

These were proved in Rosser [11], but can be derived so readily from the strong
results now available that it seems worthwhile to indicate new proofs by this
method. For instance, suppose if possible that pn <- n log n. Then

n -< r(n log n).
So by (3.2), we have

nlogn (1 1.5)n < log n -t- log log n log n -t- log log n

a result which certainly fails if e __< n. So (3.12) holds for e =< n, and a
trivial computation verifies it for smaller n. The proof of (7.9) is analogous.
From these, we can now infer Lemmas 9 and 10 of Rosser [12], using the

proofs given there. Using Lemma 9 of Rosser [12] with Theorem 18 gives

nlogn-nloglogn- n- li(n)
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for 5 <= n -< r(10s). Then (3.10) follows for e -< n -< r(10s) by Lemma 7
of Rosser [12]. Now use Lemma 9 of Rosser [12] with Theorem 30, and infer

( o. onlogn+nloglogn--n--li(n) < p 1 +logp,]
for 140 _<_ n __< es. As li(n) < 0.1 n for r(10s) =< n, by Lemma 7 of Rosser
[12], and

(7.10) pn/(log p,) < n

by (3.5), we infer (3.10) for n =< es. We use Theorem 31 in a similar manner
to complete the proof of (3.10).
We next prove (3.11). We note first of all that it has been verified for

n -<_ 1862 by the Rosser-Walker tabulution. Now let 1862 <- n, and suppose
that (3.11) has been verified for all integers less than n. Then the hypothesis
of Lemma 10 of Rosser [12] is verified, and we conclude that

(7.11) log n + n log log n n -}-

By Theorem 19, if n =< 7r(10s), then

n log log n
log n

p,- 2(p,) :/ < n log n -t-n log log n- n
n log log n

log n

By (7.9),
2(p,) 1/2 < 2(n log n + 2n log log n) 1/2 < 0.2 n,

so that (3.tl) is verified. Now let r(10s) <= n -< e369. Then (7.11) and
Theorem 29 give

( o.31 p= I 1-=] < n log n -f- n log log n n -4-
n log log n

log n

Using (7.10), we again infer (3.11 ).
31 to verify (3.11) for e69 _<_ n.

In a similar way, we can use Theorem

8. Proof of Theorems 5 through 8
We require several lemmas.

LMMX 6. For1 <= x and A <= K,

0.0463 2R(K) i + log (K/2r)K(1, x) < -t- -{- 0.1592
X1]2 K K

__
e-9.61 X--l/(logK).

Taking m 1 x in (6.5) gives

1 2R(K) 1 -b log (K/2’)(8.1) 2< K2 -t-0.1592
K< g
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Taking K A in this gives

(s.2) 1 -9.61

By Lemmas 16 and 17 of Rosser [12]

< + E + Z:
X1/2

A<7 K

0.0463 x-1/11:) 1

Our lemma now follows by use of (8.1) and (8.2).
We next state two lemmas whose proofs are so similar that we give only the

more difficult one, namely that for Lemma 8.

LEMMA 7. For 1 < x,

y (y)
y2

dy

LEMMA 8. For 1 < x,

(y- (y)) (1 -l-logy)
dyy log y

Proof. We have

XP--1yp-2 (1 q- log y)
dy

log y (p 1) log x

Now

x-
2 f y-

dy < x-
logx J logay logx

So
1 [ yp-2 (1 + log y)

dyJx log y

0.31< K 1, x) -t- 1.84
__

__x

,/--1
log x

Hence

2 -t- log x (K(1 x) + 1.8_4 + 0.31
log x \ x x ]

(p-- 1)2,log2x
2

logayd

y-2
-1-2 logady

"-I- 2x- f dy
y log log x

2-+-logx x-log z 7

log y)
dy

y
(s.a) < log x

So by Theorem 29 on p. 77 of Ingham [6], we have

(y (y)) (1 + log y) 2 + log x
dy

y2 log. y log x

2 + log x K(1, x).

K(1, x) -f- I,
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where

1 f (2 log2r--log(1--y-2)) (1.logy)
dy

2y log y

12q-log21gxx f= 2 log 2r lOgy (1 y-)
dy

1 q- log x 2 log 2r
2 log x \ x

x--2r--1+ ( 1)jrl r

1
log2-}-log x{!Ogx2rx q- r=l 2r(2r -I- 1

<2 q-loglg x<lgx2rx -t-1-’x31g2}
From this, the lemma follows.

LEMMA 9. For 0 <= a < n,

1 n log y n xya--n--1 dy <
log2y n--a logx"

Proof. We have

a--n--1 1 q- n 10g y dy ya d y-’
Y log y - lo

dy

Let us define

foo ya--n--1x
-l- a dy

log x log y

a ya-n-1 dy< x
loglogx

n x
n a log x

0.31L(x) 2q-logx K(1 x) q-1"84q-og x --(8.4)
2.04 x-2+ x- + 4.5 +

(8.15) M(z, a) (log x) log 1 q-
2 log z log x"

LEMMt 10. If1 < A <= B and a < 1/2 nd

and L(A < M(B, a), then L(x) < M(x, a) for A <- x <- B.

1.02
x--l’

Proof. We readily verify that for A __< x both L(x) and M(x, a) are de-
creasing functions of x. So for A -< x _<_ B
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LEMMA 11.

(8.7)

Proof.
that

L(x) <= L(A) < M(B, a) <-M(x, a).
For l0 < x < e6

L(x) < M(x, 0.31).

By (8.4) and (8.5) and by taking K in Lemma 6, we find

L(10s) < 3 X 10-4 < M(e6, 0.31).
So we can use Lemma 10 with A 108, B e6.
LEMMA 12. For e75 <-- x,

(8.8) L(x) < M(x, 0.47).

Proof. By taking K e25 in Lemma 6, we find that

K(1, x) < 0.0463/x1/2 e-9"61 x-1/(5R) 10-1.
From this, we readily verify by (8.4) and (8.5) that

L(e5) < 2.9 X 10-5 < M(e1, 0.47),

L(e1) < 7 X 10-6 < M(e4, 0.47),

L(e4) < 9 X 10-9 < M(e, 0.47).
Then by three applications of Lemma 10, we verify (8.8) for en __< x __< ea.
Finally for ea __< x, we take

log xK exp
R(log log x log 400)

and observe that
L(x) < 0.028/log x < M(x, 0.47)

by (8.4), Lemma 6, and (8.5).
LEMMA 13. For l0 _<_ x,

1(8.9) _-_ log log x B
P

1 ) 1.02
log 1W21ogx (x- 1) logx"

Proof. By (4.20), Lemma 8, and (3.39), we have

1- log log x- B

<_ I’(x) -x +x log x

o(x) x
x log x

(y- (y)) (1 -t-log y)
dy

yS logs y

f ((y) --O(y)) (1 -{- log y)+ dy
yS log y

2 + log (K(1 x) -I-
1"84

-i-log x -- --]
(1.02 y -t- 3Y/a)(1 -t- log y)+ dy.

yS logs y
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We apply Lemma 9 with n 1, once with a 1/2 and once with a 1/2. Then,
with the help of (8.4), the above inequality reduces to-- log logx-- B < (x) x q_L(x) 1.02

x log x log x (x 1) log x"
From this the lemma follows; we first assume 108 <__ x __< e375 and use Theorem
29, Lemma 11, and (8.5), and we then assume e375 _<_ x and use Theorem 31,
Lemma 12, and (8.5).
We now proceed to the proof of Theorem 5. It was proved for x _<_ 16,000

by the Rosser-Walker tabulation. For 16,000 _<_ x _<_ 10s, it follows from
Theorem 20. Finally, for 10 <= x, it follows by Lemma 13.
The proof of Theorem 6 proceeds similarly. For 10 _<_ x, it depends on a

lemma analogous to Lemma 13 that uses Lemma 7 rather than Lemma 8.
The entire proof parallels that of Theorem 5 so closely that we omit the details.
For x <- 16,000, Theorem 7 and Theorem 8 follow from the Rosser-Walker

tabulation, and for 16,000 _<_ x __< l0s, they follow by Theorem 23. So let us
assume that 108 _<_ x. We apply Lemma 13 in the form that the left side of
(8.9) with the absolute value bars removed is greater than the negative of
the right side. In this, we substitute for B from (2.7) and take the exponential
of both sides. We get"

e
1+ >(8.10)

log x 2 log x

where

.02--))exp((x-- 1) logx

Takingf(x) x in (4.13), we infer if n > 1

5-1 (x) -t- f o(y) 1 -nlogy
dy.p x log x J y+l log2y

Then by Theorem 9 and Lemma 9

/

So

1 y_ 1 n log y
dy

P
< 1.02

< log y

1.02n x1- 1.02n
n-- 1 logx- x-logx

1.02S > =. x- log x
1.02

(x 1) log x

So by (8.10) we conclude that (3.26) holds. Inverting both sides gives (3.28).
Similarly, if we remove the absolute value bars on the left side of (8.9) and

take the exponential of both sides, we infer (3.29). Inverting both sides
gives (3.25).
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9. Proof of Theorem 15
In this section, (n) again denotes the Euler totient function.

LEMMA 14. If m and n are positive integers, and n < exp 0(p+), then

{9.1) hie(n) p/(p 1).

Proof. Let q, q, q be the distinct primes, in increasing order, which
divide n. Then

exp (p+) > n q q p... p exp (Pr).

So r m. Consequently

n/(n) := q/(q- 1) := p/(p- 1) p/(p.- 1),

which is the sme as (9.1)
By means of Lemm 14 we can verify (3.41) numerically for succession

of intervMs if log n is not gret. For instance, we readily verify numericMly
that

p/(p 4.375 < ec log log 210 + 5/(2 log log 210).

So we cn tke m 4 in Lemm 14, nd conclude that if 210 n < 2310
exp 0(p+), then

n/(n) < ec log log 210 + 5/(2 log log 210) ec log log n 5/(2 log log n)

With the help of vMues of 0(x) nd of

taken from the Rosser-Walker tabulation, we proceeded in a step-by-step
manner as indicated above, verifying (3.41) for 3 n < exp 0(313) except
at

n p23 P

t which point (3.42) holds. As 294 < 0(313), this verifies Theorem 15 for
n E e294.
THEOREM 33. U X 5 and n < exp O(x), then

(9.2) n/(n) H,- P/(P- 1).

Proof. Choose m so that p+ x < p+. Then n < exp0(x)
exp (p+). Also 5 p+, else we would have p+ 5, contradicting
5 x < p+. Sop p+- 2 x- 2. Now use Lemm14.

LEMMA 15. Let n be an integer greater than unity and y a real number such
that 288 log n + y and log n < 0(log n + y), and

0 y- 2 (0.9 logn)/loglogn.

Then (3.41) holds for this value of n.
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By (3.29) and Theorem 33
--Ce n 0.5<log(logn +y-- 2)
(n) log (log n -t- y 2)

( :)< log log n "-t- log 1
log log log n

< log log n --1
y 2 + 0.5
log n log log n

_<_ log log n -+- 1.4
log log n

From this, (3.41) follows.
To complete the proof of Theorem 15, we hve to show that (3.41) holds

for 294 _<_ log n. In fact from Lemm 15, one can deduce (3.41) for 255 __<
logn. First assume 255 __< logn =< 1340. Takeytobe

2 -t- 2( 1 + log n)/.

Then wehve288 < logn+y < 1420. Also

log n (log n + y) 2(log n -k- y)1/2,

so that log n < 0(log n + y) by Theorem 19. As we easily verify that
0 <- y 2 -< (0.9 log n)/log log n, we infer (3.41) by Lemma 15. Finally,
let 1340 _<_ log n. Take y (0.9 log n)/log log n. Then

log n < O(log n -t- y)

holds by (3.14), and the other hypotheses of Lemma 15 are readily verified,
giving (3.41) again.
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TABLE I
(1- e) x <(x) < (1 + e) xforeb_ x

b m lO’e n

18.4 1 1.6327 2
18.5 1 1.6295 2
18.6 2 1.6256 2
18.7 2 1.5987 2
18.8 2 1.5722 2
18.9 2 1.5462 2
19.0 2 1.5206 2
19.5 2 1.3993 2
20.0 2 1.2880 2
20.5 2 1.1861 2
21 2 1.0928 2
22 2 9.2933 3
23 2 7.9327 3
24 2 6.8090 3
25 2 5.8927 3
26 2 5.1592 3
27 2 4.5870 3
28 2 4.1548 3
29 2 3.8400 3
30 2 3.6192 3
31 2 3.4690 3
32 2 3.3691 3
33 2 3.3034 3
34 2 3.2601 3
35 2 3.2310 3
36 2 3.2110 3
37 2 3.1964 3
38 2 3.1853 3
39 3 2.9365 3
40 3 2.6399 3
42 3 2.2000 3
44 3 1.9387 3
46 3 1.8064 3
48 3 1.7467 3
50 3 1.7202 3
52 3 1.7072 3
54 3 1.6994 3
56 3 1.6936 3
58 4 1.5013 3
60 4 1.3740 3

b m lO’e n

62 4 1.3108 3
64 4 1.2825 3
66 4 1.2696 3
68 4 1.2630 3
70 4 1.2588 3
72 4 1.2555 3
74 5 1.2138 3
76 5 1.1419 3
78 5 1.1074 3
80 5 1.0920 3
85 5 1.0793 3
90 5 1.0737 3
95 6 1.0075 3
100 6 9.9653 4
105 6 9.9194 4
110 6 9.8791 4
125 6 9.7608 4
150 6 9.5669 4
175 6 9.3768 4
200 6 9.1904 4
225 6 9.0078 4
250 6 8.8289 4
275 6 8.6535 4
300 6 8.4816 4
325 6 8.3131 4
350 6 8.1480 4
375 6 7.9861 4
400 6 7.8275 4
425 6 7.6721 4
450 6 7.5197 4
475 6 7.3704 4
500 6 7.2240 4
525 6 7.0806 4
550 6 6.9400 4
575 6 6.8023 4
600 6 6.6672 4
625 5 6.5182 4
650 5 6.3682 4
675 5 6.2216 4
700 5 6.0783 4

b m lO’e n

725 5 5.9384 4
750 5 5.8017 4
775 5 5.6682 4
800 5 5.5378 4
825 5 5.4103 4
850 4 5.2843 4
875 4 5.1397 4
900 4 4.9991 4
925 4 4.8624 4
950 4 4.7294 4
975 4 4.6001 4
1000 4 4.4744 4
1050 4 4.2331 4
1100 4 4.0049 4
1150 3 3.7703 4
1200 3 3.5217 4
1300 3 3.0730 4
1400 3 2.6819 4
1500 3 2.3411 4
1600 2 2.0120 4
1800 2 1.4334 4
2000 2 1.0274 4
2200 2 7.4229 5
2400 2 5.4246 5
2600 2 4.0328 5
2800 2 3.0861 5
3000 2 2.5073 5
3200 3 2.4309 5
3400 3 1.8801 5
3600 3 1.4596 5
3800 3 1.1388 5
4000 3 8.9428 6
4200 3 7.0899 6
4400 3 5.7041 6
4500 3 5.1602 6
4600 3 4.7095 6
4700 3 4.3563 6
4800 3 4.1232 6
4900 3 4.0977 6
5000 3 4.9163 6
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TABLE II

(x) _1 log p
p_ P

_
P

500
1000
1500
2000
2500
3000
3500
4000
4500
50O0
5500
6000
6500
7000
7500
80OO
85OO
9O00
9500
10000
1O5O0
11000
11500
12000
12500
13000
13500
14000
14500
15000
155OO
16000

474.55444 41547 2.09670 95528 4.94448 99600
956.24526 51201 2.19808 01272 5.60951 04754
1462.14165 18014 2.25562 82528 6.01869 61634
1939.83920 03026 2.29244 84920 6.29327 07024
2433.60275 29800 2.32105 31990 6.51384 37141
2932.35921 18787 2.34404 93716 6.69584 35999
3409.45718 45205 2.36222 13278 6.84275 32932
3911.14539 95812 2.37858 30199 6.97729 51026
4412.18831 05019 2.39276 53465 7.09571 03205
4911.69535 17069 2.40518 86577 7.20087 63227
5391.37223 83531 2.41586 31315 7.29230 15305
5893.29745 72481 2.42598 40781 7.37988 11065
6408.90736 71752 2.43543 75880 7.46249 21364
6920.42102 99437 2.44401 57706 7.53814 09953
7364.85741 60237 2.45091 39779 7.59945 43711
7875.15038 47974 2.45829 17384 7.66550 12982
8343.99966 34035 2.46460 59355 7.72243 05072
8870.37499 26578 2.47124 44465 7.78267 62189
9418.36877 33985 2.47772 62760 7.84187 45368
9895.99137 91570 2.48305 99472 7.89086 36043
10403.90704 75207 2.48842 73950 7.94043 00603
10877.34163 04695 2.49317 02420 7.98445 72244
11362.43971 33403 2.49778 96786 8.02755 03003
11840.48575 38722 2.50212 24249 8.06816 24606
12348.83694 44657 2.50652 81281 8.10963 67280
12868.72809 74239 2.51084 52555 8.15044 40734
13371.76845 32826 2.51484 72175 8.18842 74850
13867.29252 76925 2.51862 72664 8.22444 83834
14307.28400 32521 2.52185 38317 .8.25531 02383
14844.79169 21653 2.52565 30642 8.29177 62756
15384.23856 36932 2.52932 29775 8.32712 81756
15886.79246 84213 2.53262 50069 8.35904 03921

11.15950 15857
12.35097 56739
13.08291 09945
13.57375 00182
13.96771 93817
14.29270 53203
14.55484 67736
14.79498 00928
15.00632 74987
15.19393 85100
15.35701 01674
15.51324 05518
15.66060 23831
15.79552 97610
15.90487 48550
16.02265 87938
16.12415 52820
16.23155 79133
16.33711 55421
16.42448 96322
16.51288 85620
16.59139 63457
16.66821 99665
16.74059 88963
16.81451 87368
16.88726 89363
16.95498 91186
17.01920 34304
17.07420 76210
17.13920 20969
17.20221 91093
17.25911 70367
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TABLE III

4
8
9
16
25
27
32
49
64
81
121
125
128
169
243
256
289
343
361
512
529
625
729
841
961
1024
1331
1369
1681
1849
2048
2187
2197
2209
2401
2809
3125
3481
3721
4096
4489
4913

(.) ()

0.69314
1.38629
2.48490
3.17805
4.78749
5.88610
6.57925
8.52516
9.21830
10.31692
12.71481
14.32425
15.01740
17.58235
18.68096
19.37411
22.20732
24.15323
27.09767
27.79081
30.92631
32.53575
33.63436
37.00165
40.43564
41.12879
43.52668
47.13760
50.85117
54.61237
55.30552
56.40413
58.96908
62.81923
64.76514
68.73543
70.34487
74.42241
78.53328
79.22643
83.43112
86.26434

71805
43611
66497
38303
17427
40314
12120
13610
85416
08302
61030
40155
11960
05535
28422
00227
33668
35158
24950
96756
38915
18039
40926
99226
71271
43076
95804
74931
95598
96755
68560
91447
85022
61039
62529
81665
60789
35228
73870
45675
71869
05310

59945
19891
88000
47946
82046
50156
10101
65414
25360
93469
91840
25940
85886
47422
15532
75477
31693
87O07
53447
13392
42542
76642
44752
31226
16372
76318
74688
18913
23221
16783
76728
44838
06375
16433
71747
23868
57969
63688
37000
96945
87911
44127

(n)

5041
5329
6241
6561
6859
6889
7921
8192
9409
10201
10609
11449
11881
12167
12769
14641
15625
16129
16384
16807
17161
18769
19321
19683
22201
22801
24389
24649
26569
27889
28561
29791
29929
32041
32761
32768
36481
37249
38809
39601
44521
49729

90.52702
94.81747
99.18692
100.28553
103.22997
107.64881
112.13745
112.83060
117.40531
122.02043
126.65516
131.32799
136.01934
139.15483
143.88222
146.28011
147.88955
152.73374
153.42688
155.37279
160.24799
165.16797
170.10245
171.20106
176.20501
181.22229
184.58958
189.64583
194.73958
199.85757
202.42252
205.85651
211.00980
216.19719
221.39568
222.08883
227.34110
232.60379
237.88700
243.18030
248.53216
253.93933

04080
98492
77017
99903
89695
95773
59470
31276
41061
46229
36111
24456
03278
45438
23625
76353
55477
26342
98147
99638
72870
82128
21459
44346
07406
05774
64074
22127
24135
62259
55834
27879
43824
01882
72195
44000
78281
80170
17457
657O5
47039
64754

85442
33834
00855
68965
35405
32003
64143
24088
27471
68731
98366
60272
89416
18566
30906
29277
63377
21969
81914
37227
38379
66504
97195
65305
10764
25689
12163
60471
67233
83988
45525
30671
28450
69205
35031
94976
41606
46492
84480
08972
85039
45158
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TABLE IV

V() V()/’() log p

2 0.93754 82543 15843 75 0.56996 09930 94532 80 0.49309 11093
3 0.19812 62428 85636 85 0.16482 26821 58277 24 0.15075 75555
4 6891 12658 96125 38 6366 97649 55371 13 6060 76333
5 2857 37805 09462 95 2755 61921 91530 47 2683 86012
6 1285 21651 31795 72 1263 30690 32511 06 1245 90807
7 603 35169 60875 64 598 35585 70638 40 594 06890
8 290 19525 53710 67 289 01683 08046 75 287 95247
9 141 59822 27241 81 141 31440 78811 70 141 04919
10 69 70330 08171 39 69 63404 45284 02 69 56784
11 34 50222 22368 36 34 48518 00538 42 34 46864
12 17 13828 45854 35 17 13406 81216 67 17 12993
13 8 53239 08655 93 8 53134 39558 17 8 53031
14 4 25414 93381 78 4 25388 87954 23 4 25363
15 2 12310 85533 00 2 12304 36131 40 2 12297
16 1 06024 42032 51 1 06022 80005 72 1 06021
17 52968 83357 53 52968 42904 49 52968
18 26470 02978 82 26469 92874 47 26469
19 13230 23694 78 13230 21170 17 13230
20 6613 53020 74 6613 52389 83 6613
21 3306 23676 77 3306 23519 08 3306
22 1652 94254 16 1652 94214 75 1652
23 826 41272 38 826 41262 53 826
24 413 18686 29 413 18683 83 413
25 206 58693 60 206 58692 98 206
26 103 29130 38 103 29130 23 103
27 51 64493 08 51 64493 04 51
28 25 82222 51 25 82222 50 25
29 12 91103 25 12 91103 24 12

68764 43
43950 43
50770 08
76798 36
22800 O0
39148 20
08729 24
21424 53
47344 62
25630 50
52446 21
09167 11
05574 13
90562 75
18616 76
02557 64
82787 80
18648 51
51759 42
23361 48
94175 35
41252 68
18681 37
58692 36
29130 08
64493 O0
82222 49
91103 24
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