Nombre de solutions de l'équation $x^2 = x \pmod{n}$ pour n impair (3/12/2017)

Soit n un nombre impair alors le nombre de solutions de l'équation $x^2 = x \pmod{n}$ est égal à 2^k avec k le nombre de facteurs premiers de la factorisation de n.

On a $n=\prod_k p_j^{\alpha_j}$. $\mathbb{Z}/n\mathbb{Z}$ est isomorphe au produit des $\mathbb{Z}/p_j^{\alpha_j}\mathbb{Z}$. Les solutions de l'équation $x^2=x \pmod n$ sont données en prenant pour chaque p_j une solution de l'équation $x^2=x$ dans l'anneau $\mathbb{Z}/p_j^{\alpha_j}\mathbb{Z}$. Il y en a 2:0 et 1. Pour trouver les solutions dans $\mathbb{Z}/p_j^{\alpha_j}\mathbb{Z}$, on regarde le résidu r dans \mathbb{F}_{p_j} . Comme \mathbb{F}_{p_j} est un corps, r=0 ou r=1.

- si r = 0, x = 0 car la valuation v de x (la plus petite puissance de p_j qui divise x) ne peut être égale à 2v sans être nulle ;
- si r = 1, on écrit x = 1 + y et on a $(1 + y)^2 = 1 + y$ d'où $y^2 + y = 0$ et on a y = 0 car la valuation amène à une contradiction si y n'est pas nul.