Goldbach conjecture and Brownian motion

Denise Vella-Chemla

March 22, 2014

In the following, one is located in a two-dimensional cartesian space.
We associate to each even integer a "global motion in the plane", that is constituted of several moves associated to this even integer decompositions as a sum of two odd integers ${ }^{1}$. Every motion has $(0,0)$ point as origin.

We code :

- an n decomposition of the form $p+q$ in which p and q are two primes and $p \leqslant n / 2$ by an increase of 1 of the current point abscissa;
- an n decomposition of the form $p+q$ in which p is an odd compound integer and q is a prime and $p \leqslant n / 2$ by an increase of 1 of the current point ordinate ;
- an n decomposition of the form $p+q$ in which p is a prime and q is an odd compound integer and $p \leqslant n / 2$ by a decreasing by 1 of the current point ordinate ;
- an n decomposition of the form $p+q$ in which p and q are two odd compound integers and $p \leqslant n / 2$ by a decreasing by 1 of the current point abscissa.

Example : global move associated with even integer 48
48 admits 11 decompositions as a sum of two odd integers :
$-5+43,7+41,11+37,17+41,19+29$ decompositions, adding two primes, are coded by 5 moves to the right ;
$-3+45,13+35,23+25$ decompositions, adding a prime and an odd compound integer are coded by 3 moves to the bottom ;
$-9+39,15+43,21+27$ decompositions, adding an odd compound integer are coded by par 3 moves to the top.
One has moved from origin point $(0,0)$ to point $(2,-3)$.
We can see that this choice allows finding easily even numbers that are of the form $2 p$ with p prime : their "global move" consists only in a unique move to the bottom or to the right.

[^0]The proposal we made can be coded in c++ to verify this result concerning prime doubles :

```
#include <iostream>
#include <cmath>
int prime(int atester) {
    unsigned long diviseur=2;
    bool pastrouve=true;
    unsigned long k = 2;
    if (atester == 1) return 0;
    if (atester == 2) return 1;
    if (atester == 3) return 1;
    if (atester == 5) return 1;
    if (atester == 7) return 1;
    while (pastrouve) {
        if ((k * k) > atester) return 1;
        else if ((atester % k) == 0) { return 0 ; }
            else k++;
    }
}
int main (int argc, char* argv[]) {
    int n, k, x, y, xprec, yprec ;
    x = 0 ;
    y = 0;
    for (n=14 ; n <= 1000 ; n=n+2) {
        xprec = x ;
        yprec = y ;
        x = 0;
        y = 0 ;
        for (k=3 ; k <= n/2 ; k=k+2) {
            if (prime(k) && prime(n-k)) x=x+1 ;
            else if (prime(k) && (not(prime(n-k)))) y=y-1 ;
            else if ((not(prime(k))) && prime(n-k)) y=y+1 ;
            else if ((not(prime(k))) && (not(prime(n-k)))) x=x-1 ;
        }
        if ((((x-xprec) == 1) && ((y-yprec) == 0))
            || (((x-xprec) == 0) && ((y-yprec) == -1)))
            std::cout << "only one step bottom or right for integer " << n/2 <<
                "\n" ;
    }
}
```


[^0]: 1. $1+(n-1)$ decomposition is omitted.
