Quadratic residues numbers of prime or compound integers

Denise Vella-Chemla

28.8.2016

We would want to precise here the fact that it is possible to establish if a number is prime or not by counting the number (that we note $R(n)$) of its not null quadratic residues ${ }^{11}$

More precisely, we induce from countings for numbers until 100 the following hypothesis :

- If n is an odd number :
- if $R(n)$ is equal to $(n-1) / 2$ then n is prime.
- if $R(n)$ is lesser than $(n-1) / 2$ then n is compound;
- If n is an even number :
- if $R(n)$ is equal to $n / 2$ then n is the double of a prime number ;
- if $R(n)$ is lesser than $n / 2$ then n is the double of a compound number.

Our hypothesis can be written :
(H1) $\forall n, n \geq 3$, $R(n)=\#\left\{y\right.$ such that $\exists x \in \mathbb{N}^{\times}, \exists k \in \mathbb{N}, x^{2}-k n-y=0$ with $\left.0<y\right\}<\frac{n}{2}$
\Longleftrightarrow
n is the double of a compound number if it is even and n is compound if it is odd
(H2) $\forall n, n \geq 3$,
$R(n)=\#\left\{y\right.$ such that $\exists x \in \mathbb{N}^{\times}, \exists k \in \mathbb{N}, x^{2}-k n-y=0$ with $\left.0<y\right\}=\frac{n}{2}$
\Longleftrightarrow
n is the double of a prime number if it is even and n is prime if it is odd.
To demonstrate our hypothesis, one should have to prove :

1) that it is true by elevating a prime number p to the power k;
$2)$ that it is true by multiplying powers of primes.
We recall that the number of quadratic residues of a prime number p is equal to $\frac{p-1}{2}$.
Let us understand the hypothesis heuristically.
The number of quadratic residues of powers p^{k} of a prime number p is always strictly lesser than $\frac{p^{k}-1}{2}$ because all p 's multiples can't be quadratic residues of powers of p.
The modular equivalence of differences $a^{2}-b^{2} \equiv(a-b)(a+b)(\bmod n)$ has as consequence a great redundancy of squares that can be obtained modulo n and this reduces the number of quadratic residues of products of powers, rendering this number always lesser than the half of the product considered.
[^0]Let us show this redundancy mechanism on a simple example (in annex, we will provide as another example squares redundancy in the case of $n=175=5^{2} .7$).

Modulus $n=35(R(35)=11$ and $11<(35-1) / 2)$

34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	4	9	16	25	1	14	29	11	30	16	4	29	21	15	11	9

Squares redundancy for modulus 35 are :

$$
\begin{array}{rccl}
6^{2} \equiv 1^{2}(\bmod 35) & \text { since } & (6-1) \cdot(6+1)=5 \cdot 7 & \text { and } 35 \mid 35 . \\
11^{2} \equiv 4^{2}(\bmod 35) & \text { since } & (11-4) \cdot(11+4)=7 \cdot 15=105 & \text { and } 35 \mid 105 . \\
12^{2} \equiv 2^{2}(\bmod 35) & \text { since } & (12-2) \cdot(12+2)=10 \cdot 14=140 & \text { and } 35 \mid 140 . \\
13^{2} \equiv 8^{2}(\bmod 35) & \text { since } & (13-8) \cdot(13+8)=5 \cdot 21=105 & \text { and } 35 \mid 105 . \\
16^{2} \equiv 9^{2}(\bmod 35) & \text { since } & (16-9) \cdot(16+9)=7 \cdot 25=175 & \text { and } 35 \mid 175 . \\
17^{2} \equiv 3^{2}(\bmod 35) & \text { since } & (17-3) \cdot(17+3)=14 \cdot 20=280 & \text { and } 35 \mid 280 .
\end{array}
$$

The quadratic residues number can be obtained by the following formulas :

$$
\begin{array}{lll}
R(2) & =1, & \\
R(4) & =1, & \\
R(p) & =\frac{p-1}{2} & \forall p \text { prime }>2 \\
R(2 p) & =p & \forall p \text { prime }>2 \\
R(4 p) & =p & \forall p \text { prime }>2 \\
R\left(2^{k}\right) & =\left(\frac{3}{2}+\frac{2^{k}}{6}+\frac{(-1)^{k+1}}{6}\right)-1, & \forall k>2 \\
R\left(p^{k}\right) & =\left(\frac{3}{4}+\frac{(p-1)(-1)^{k+1}}{4(p+1)}+\frac{p^{k+1}}{2(p+1)}\right)-1 & \forall p \text { prime }>2, \forall k \geq 2 \\
R\left(\prod_{i=1}^{k} p_{i}^{\alpha_{i}}\right) & =-1+\prod_{i=1}^{k}\left(R\left(p_{i}^{\alpha_{i}}\right)+1\right) &
\end{array}
$$

It can be noticed that in the case of powers, 1 is substracted after the calculus between parentheses has been made to obtained an integer.

Bibliographie

[1] Victor-Amédée Lebesgue, Démonstrations de quelques théorèmes relatifs aux résidus et aux nonrésidus quadratiques, Journal de Mathématiques pures et appliquées (Journal de Liouville), 1842, vol.7, p.137-159.
[2] Augustin Cauchy, Théorèmes divers sur les résidus et les non-résidus quadratiques, Comptesrendus de l'Académie des Sciences, T10, 06, 16 mars 1840.

Annex 1: Squares redundancy for modulus $175=5^{2} .7$

For modulus 175 , we write as couples numbers that have the same square, we don't precise the difference equality $a^{2}-b^{2}=(a-b)(a+b)$ that is such that factorizations of numbers $a-b$ and $a+b$ "are containing" all factors of $175=5^{2} .7$:

$$
\begin{aligned}
& (16,9),(20,15),(23,2),(25,10),(30,5),(32,18),(37,12),(39,11),(40,5),(41,34),(44,19), \\
& (45,10),(46,4),(48,27),(50,15),(51,26),(53,3),(55,15),(57,43),(58,33),(60,10),(62,13), \\
& (64,36),(65,5),(66,59),(67,17),(69,6),(71,29),(72,47),(73,52),(74,24),(75,5),(76,1), \\
& (78,22),(79,54),(80,10),(81,31),(82,68),(83,8),(85,15),(86,61),(87,38) .
\end{aligned}
$$

Moreover, 35 and 70 have their square that is null and we took as a convention not to count null quadratic residues.
$R(175)=43$ and $43<(175-1) / 2$.
Annex 2: Not null quadratic residues numbers for integers from 1 to 100

| $1 \rightarrow 0$ | $21 \rightarrow 7$ | $41 \rightarrow 20$ | $61 \rightarrow 30$ | $81 \rightarrow 30$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $2 \rightarrow 1$ | $22 \rightarrow 11$ | $42 \rightarrow 15$ | $62 \rightarrow 31$ | $82 \rightarrow 41$ |
| $3 \rightarrow 1$ | $23 \rightarrow 11$ | $43 \rightarrow 21$ | $63 \rightarrow 15$ | $83 \rightarrow 41$ |
| $4 \rightarrow 1$ | $24 \rightarrow 5$ | $44 \rightarrow 11$ | $64 \rightarrow 11$ | $84 \rightarrow 15$ |
| $5 \rightarrow 2$ | $25 \rightarrow 10$ | $45 \rightarrow 11$ | $65 \rightarrow 20$ | $85 \rightarrow 26$ |
| $6 \rightarrow 3$ | $26 \rightarrow 13$ | $46 \rightarrow 23$ | $66 \rightarrow 23$ | $86 \rightarrow 43$ |
| $7 \rightarrow 3$ | $27 \rightarrow 10$ | $47 \rightarrow 23$ | $67 \rightarrow 33$ | $87 \rightarrow 29$ |
| $8 \rightarrow 2$ | $28 \rightarrow 7$ | $48 \rightarrow 7$ | $68 \rightarrow 17$ | $88 \rightarrow 17$ |
| $9 \rightarrow 3$ | $29 \rightarrow 14$ | $49 \rightarrow 21$ | $69 \rightarrow 23$ | $89 \rightarrow 44$ |
| $10 \rightarrow 5$ | $30 \rightarrow 11$ | $50 \rightarrow 21$ | $70 \rightarrow 23$ | $90 \rightarrow 23$ |
| $11 \rightarrow 5$ | $31 \rightarrow 15$ | $51 \rightarrow 17$ | $71 \rightarrow 35$ | $91 \rightarrow 27$ |
| $12 \rightarrow 3$ | $32 \rightarrow 6$ | $52 \rightarrow 13$ | $72 \rightarrow 11$ | $92 \rightarrow 23$ |
| $13 \rightarrow 6$ | $33 \rightarrow 11$ | $53 \rightarrow 26$ | $73 \rightarrow 36$ | $93 \rightarrow 31$ |
| $14 \rightarrow 7$ | $34 \rightarrow 17$ | $54 \rightarrow 21$ | $74 \rightarrow 37$ | $94 \rightarrow 47$ |
| $15 \rightarrow 5$ | $35 \rightarrow 11$ | $55 \rightarrow 17$ | $75 \rightarrow 21$ | $95 \rightarrow 29$ |
| $16 \rightarrow 3$ | $36 \rightarrow 7$ | $56 \rightarrow 11$ | $76 \rightarrow 19$ | $96 \rightarrow 13$ |
| $17 \rightarrow 8$ | $37 \rightarrow 18$ | $57 \rightarrow 19$ | $77 \rightarrow 23$ | $97 \rightarrow 48$ |
| $18 \rightarrow 7$ | $38 \rightarrow 19$ | $58 \rightarrow 29$ | $78 \rightarrow 27$ | $98 \rightarrow 43$ |
| $19 \rightarrow 9$ | $39 \rightarrow 13$ | $59 \rightarrow 29$ | $79 \rightarrow 39$ | $99 \rightarrow 23$ |
| $20 \rightarrow 5$ | $40 \rightarrow 8$ | $60 \rightarrow 11$ | $80 \rightarrow 11$ | $\rightarrow 400 \rightarrow 21$ |

[^0]: ${ }^{1}$ We will omit this non nullity of quadratic residues considered.

