Etude combinatoire de la Conjecture de Goldbach

Denise Vella
16 avril 2009

1 Introduction

La conjecture de Goldbach (1742) énonce que tout nombre pair 2x supérieur ou égal à 4 est la somme de deux nombres premiers. Est présentée ici une vision combinatoire de la Conjecture de Goldbach.

2 Compter le nombre de sommes de deux sommants premiers impairs inférieurs à un nombre premier donné

\[
\begin{array}{cccccccc}
3 + 3 & 3 + 5 & 3 + 7 & 3 + 11 & 3 + 13 & 3 + 17 & 3 + 19 \\
5 + 5 & 5 + 7 & 5 + 11 & 5 + 13 & 5 + 17 & 5 + 19 \\
7 + 7 & 7 + 11 & 7 + 13 & 7 + 17 & 7 + 19 \\
11 + 11 & 11 + 13 & 11 + 17 & 11 + 19 \\
13 + 13 & 13 + 17 & 13 + 19 \\
17 + 17 & 17 + 19 \\
19 + 19
\end{array}
\]
On compte dans ce tableau $28 = \frac{7 \times 8}{2}$ sommes de deux nombres premiers impairs inférieurs ou égaux à 19, 19 étant le 7ème nombre premier impair.

De manière plus générale, il y a $\frac{i(i+1)}{2}$ sommes de deux nombres premiers impairs inférieurs ou égaux à p_i si p_i est le $i^{ème}$ nombre premier impair.

Si l’on choisit deux éléments dans ce tableau qui sont soit sur la même ligne, soit sur la même colonne, leur valeur est forcément différente (ils sont liés par une relation d’ordre strict). Donc si l’on considère la totalité des éléments qui sont sur les deux plus grandes diagonales du tableau, on obtient $7 + 6 = 13$ sommes de deux nombres premiers impairs différentes, 19 étant le 7ème nombre premier impair. On peut étendre notre constatation ainsi : si l’on considère l’ensemble de tous les éléments d’une même ligne, il existe un ordre total sur cet ensemble.

On va garder en mémoire ces deux calculs :
- il y a $2i - 1$ sommes de deux premiers nombres impairs inférieurs ou égaux à p_i qui sont toutes de valeurs différentes (donc ordonnées totalement) et qui sont comprises entre 6 et $2p_i$;
- il y a d’autre part $\frac{i^2 - 3i + 2}{2}$ autres sommes comprises également entre 6 et $2p_i$ que l’on ne sait pas placer, selon la relation d’ordre total définie ci-dessus, par rapport aux $2i - 1$ sommes précédentes.
3 Compter le nombre de sommes de deux sommants impairs inférieurs à un
nombre premier donné

<table>
<thead>
<tr>
<th>3+3</th>
<th>3+5</th>
<th>3+7</th>
<th>3+9</th>
<th>3+11</th>
<th>3+13</th>
<th>3+15</th>
<th>3+17</th>
<th>3+19</th>
<th>3+21</th>
<th>3+23</th>
<th>3+25</th>
<th>3+27</th>
<th>3+29</th>
<th>3+31</th>
<th>3+33</th>
<th>3+35</th>
</tr>
</thead>
<tbody>
<tr>
<td>5+5</td>
<td>5+7</td>
<td>5+9</td>
<td>5+11</td>
<td>5+13</td>
<td>5+15</td>
<td>5+17</td>
<td>5+19</td>
<td>5+21</td>
<td>5+23</td>
<td>5+25</td>
<td>5+27</td>
<td>5+29</td>
<td>5+31</td>
<td>5+33</td>
<td>5+35</td>
<td></td>
</tr>
<tr>
<td>7+7</td>
<td>7+9</td>
<td>7+11</td>
<td>7+13</td>
<td>7+15</td>
<td>7+17</td>
<td>7+19</td>
<td>7+21</td>
<td>7+23</td>
<td>7+25</td>
<td>7+27</td>
<td>7+29</td>
<td>7+31</td>
<td>9+9</td>
<td>9+11</td>
<td>9+13</td>
<td></td>
</tr>
<tr>
<td>13+13</td>
<td>13+15</td>
<td>13+17</td>
<td>13+19</td>
<td>15+15</td>
<td>15+17</td>
<td>15+19</td>
<td>15+21</td>
<td>15+23</td>
<td>17+17</td>
<td>17+19</td>
<td>17+21</td>
<td>19+19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On a barré les éléments dont le deuxième sommant est supérieur strictement à 19. On a coloré en bleu les sommes de deux
nombres premiers impairs.

On voit que les \(\frac{i(i + 1)}{2} \) sommes de deux nombres premiers impairs vont trouver leur place dans les \(p_t - 2 = 19 - 2 = 17 \)
colonnes. On a vu dans la première section que \(2i - 1 \) sommes de deux nombres premiers impairs sont forcément différentes.
Elles vont donc occuper \(2i - 1 \) colonnes parmi les \(p_t - 2 \) colonnes du tableau des sommes de deux nombres impairs.

Il nous reste à placer \(\frac{i^2 - 3i + 2}{2} \) nombres dont on espère qu’ils vont par une chance inouïe couvrir les \((p_t - 2) - (2i - 1) = p_t - 2i - 1 \) colonnes qui n’ont pas été couvertes par les sommes strictement ordonnées de l’étape précédente.
Là, on est confronté au problème suivant : on peut tout à fait imaginer que, jouant de malchance, les nombres restant dans
la partie haute droite du premier tableau, ne viennent pas se positionner dans les bonnes colonnes. Il subsiste donc un trou
dans le raisonnement qui correspondrait notamment au fait qu’une colonne resterait sans somme associée. On va donc utiliser
certaines propriétés d’ordre total sur certains ensembles de ces sommes restantes pour comprendre comment elles “couvrent”
les colonnes “trous” au fur et à mesure jusqu’à l’une certaine d’entre elles.
4 Avaler les trous petit à petit

Pour bien fixer les idées, réétudions la droite des nombres pairs, une fois “remplie” par les deux plus grandes diagonales du tableau des sommes de deux nombres premiers impairs. On a vu qu’il subsistait 4 trous.

\[
\begin{array}{cccccccccccccccc}
6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 \\
\times & \times & \times & \times & \times & \bullet & \times & \bullet & \times & \times & \times & \bullet & \times & \bullet & \times & \times & \times
\end{array}
\]

Voyons comment pourraient se positionner sur cette droite les 15 éléments restants de la partie haute-droite du premier tableau, en les prenant ligne par ligne.

On pourrait imaginer que les 5 sommes de deux premiers impairs de la première ligne (la première somme est $2 \times 3 + 4$), qui correspondent en fait aux nombres $3 + 7$, $3 + 11$, $3 + 13$, $3 + 17$ et $3 + 19$), et qui sont toutes différentes, se positionneraient ainsi sur la ligne :

\[
\begin{array}{cccccccccccccccc}
6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 \\
\times & \times
\end{array}
\]

Au passage, on constate qu’elles “colmateraient le trou” 16 mais ça pourrait ne pas être le cas.
Les 4 sommes de la deuxième ligne, dont la première somme vaut $2 \times 5 + 4$, se positionneraient ainsi :

\[
\begin{array}{cccccccccccccccc}
6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 \\
\times & \times
\end{array}
\]

Les 3 sommes de la troisième ligne, se positionneraient quant à elles ainsi à partir de $2 \times 7 + 4$.

\[
\begin{array}{cccccccccccccccc}
6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 \\
\times & \times
\end{array}
\]
Ajoutons enfin les sommes des 4ème et 5ème lignes.

<table>
<thead>
<tr>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
<th>32</th>
<th>34</th>
<th>36</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

On constate au passage que les trous correspondant aux nombres 16, 20 et 28 ont été “colmatés” tandis que le trou 32 subsiste. On constate aussi qu’il y a eu une discontinuité dans nos recouvrements de la ligne : le nombre 24 n’a été “couvert” par aucune des lignes de sommes qui ont été placées au fur et à mesure sur la droite. De la même façon, la lectrice avertie aura sûrement remarqué que si dans le deuxième tableau, au lieu d’aller jusqu’au nombre premier 19, on s’était arrêté au nombre premier 17, la colonne correspondant au nombre 32 n’aurait contenu aucun élément bleu, une fois les éléments strictement supérieurs à 17 barrés (le seul bleu de cette colonne est 13 + 19).

Imaginons ce qui va se passer quand on va considérer des nombres premiers de plus en plus grands. Les lignes du tableau des sommes de deux nombres premiers impairs, privés de leurs deux premiers éléments (appartenant aux deux plus grandes diagonales), vont être de plus en plus longues, mais elles seront toujours positionnées sur la droite des nombres pairs à partir du même nombre initial. Un nombre comme 24 finira même par être “couvert” par leur chevauchement, et ainsi tous les nombres entiers, à un moment à définir, finiront par être somme de deux nombres premiers impairs.