Goldbach's conjecture, 4 letters language, variables and invariants

Denise Vella-Chemla

10/5/2014

1 Introduction

Goldbach's conjecture states that each even integer except 2 is the sum of two prime numbers. In the following, one is interested in decompositions of an even number n as a sum of two odd integers $p+q$ with $3 \leqslant p \leqslant n / 2, n / 2 \leqslant q \leqslant n-3$ and $p \leqslant q$. We call p a n 's first range sommant and q a n 's second range sommant.

Notations :

We will designate by :

- a : an n decomposition of the form $p+q$ with p and q primes;
- b : an n decomposition of the form $p+q$ with p compound and q prime;
$-c$: an n decomposition of the form $p+q$ with p prime and q compound;
$-d$: an n decomposition of the form $p+q$ with p and q compound numbers.

Example :

40	3	5	7	9	11	13	15	17	19
	37	35	33	31	29	27	25	23	21
l_{40}	a	c	c	b	a	c	d	a	c

2 Main array

We designate by $T=(L, C)=\left(l_{n, m}\right)$ the array containing $l_{n, m}$ elements that are one of a, b, c, d letters. n belongs to the set of even integers greater than or equal to $6 . m$, belonging to the set of odd integers greater than or equal to 3 , is an element of list of n first range sommants.

Let us consider g function defined by :

$$
\begin{aligned}
g: \quad 2 \mathbb{N} & \rightarrow 2 \mathbb{N}+1 \\
x & \mapsto 2\left\lfloor\frac{x-2}{4}\right\rfloor+1
\end{aligned}
$$

$g(6)=3, g(8)=3, g(10)=5, g(12)=5, g(14)=7, g(16)=7$, etc.
$g(n)$ function defines the greatest of n first range sommants.

As we only consider n decompositions of the form $p+q$ where $p \leqslant q$, in T will only appear letters $l_{n, m}$ such that $m \leqslant 2\left\lfloor\frac{n-2}{4}\right\rfloor+1$ in such a way that T array first letters are $: l_{6,3}, l_{8,3}, l_{10,3}, l_{10,5}, l_{12,3}, l_{12,5}, l_{14,3}, l_{14,5}, l_{14,7}$, etc.

Here are first lines of array T.

C	3	5	7	9	11	13	15	17
L								
6	a							
8	a							
10	a	a						
12	c	a						
14	a	c	a					
16	a	a	c					
18	c	a	a	d				
20	a	c	a	b				
22	a	a	c	b	a			
24	c	a	a	d	a			
26	a	c	a	b	c	a		
28	c	a	c	b	a	c		
30	c	c	a	d	a	a	d	
32	a	c	c	b	c	a	b	
34	a	a	c	d	a	c	b	a
36	c	a	a	d	c	a	d	a
\cdots								

Figure 1 : words of even numbers between 6 and 36

Remarks :

1) words on array's diagonals called diagonal words have their letters either in $A_{a b}=\{a, b\}$ alphabet or in $A_{c d}=\{c, d\}$ alphabet.
2) a diagonal word codes decompositions that have the same second range sommant.

For instance, on Figure 4, letters aaabaa of the diagonal that begins at letter $l_{26,3}=a$ code decompositions $3+23,5+23,7+23,9+23,11+23$ and $13+23$.
3) let us designate by l_{n} the line whose elements are $l_{n, m}$. Line l_{n} contains $\left\lfloor\frac{n-2}{4}\right\rfloor$ elements.
4) n being fixed, let us call $C_{n, 3}$ the column formed by $l_{k, 3}$ for $6 \leqslant k \leqslant n$.

In this column $C_{n, 3}$, let us distinguish two parts, the "top part" and the "bottom part" of the column.
Let us call $H_{n, 3}$ column's "top part", i.e. set of $l_{k, 3}$ where $6 \leqslant k \leqslant\left\lfloor\frac{n+4}{2}\right\rfloor$.
Let us call $B_{n, 3}$ column's "bottom part", i.e. set of $l_{k, 3}$ where $\left\lfloor\frac{n+4}{2}\right\rfloor<k \leqslant n$.

Figure 2: $n=34$

To better understand countings in next section, we will use projection P of line n on bottom part of first column $B_{n, 3}$ that "associates" letters at both extremities of a diagonal. If we consider application proj such that $\operatorname{proj}(a)=\operatorname{proj}(b)=a$ and $\operatorname{proj}(c)=\operatorname{proj}(d)=c$ then, since 3 is prime, $\operatorname{proj}\left(l_{n, 2 k+1}\right)=l_{n-2 k+2,3}$.

We can also understand the effect of this projection (that preserves second range sommant) by analyzing decompositions :

- if $p+q$ is coded by an a or a b letter, it corresponds to two possible cases in which q is prime, and so $3+q$ decomposition, containing two prime numbers, will be coded by an a letter ;
- if $p+q$ is coded by a c or a d letter, it corresponds to two possible cases in which q is compound, and so $3+q$ decomposition, of the form prime + compound will be coded by a c letter.

We will also use in next section a projection that transforms first range sommant in a second range sommant that is combined with 3 as a first range sommant ; let us analyze the effect that such a projection will have on decompositions :

- if $p+q$ is coded by an a or a c letter, it corresponds to two possible cases in which p is prime, and so $3+p$ decomposition, containing two prime numbers, will be coded by an a letter ;
- if $p+q$ is coded by a b or a d letter, it corresponds to two possible cases in which p is compound, and so $3+p$ decomposition, of the form prime + compound will be coded by a c letter.

3 Computations

1) We note in line n by :

- $X_{a}(n)$ the number of n decompositions of the form prime + prime;
- $X_{b}(n)$ the number of n decompositions of the form compound + prime;
- $X_{c}(n)$ the number of n decompositions of the form prime + compound;
- $X_{d}(n)$ the number of n decompositions of the form compound + compound.
$X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor$ is the number of elements of line n.
Example $n=34$:
$X_{a}(34)=\#\{3+31,5+29,11+23,17+17\}=4$
$X_{b}(34)=\#\{15+19\}=1$.
$X_{c}(34)=\#\{7+27,13+21\}=2$
$X_{d}(34)=\#\{9+25\}=1$

2) Let $Y_{a}(n)$ (resp. $\left.Y_{c}(n)\right)$ being the number of a letters (resp. c) that appear in $B_{n, 3}$. We recall that there are only a and c letters in first column because it contains letters associated with decompositions of the form $3+x$ and because 3 is prime.

Example :

$$
\begin{aligned}
& -Y_{a}(34)=\#\{3+17,3+19,3+23,3+29,3+31\}=5 \\
& -Y_{c}(34)=\#\{3+21,3+25,3+27\}=3
\end{aligned}
$$

3) Because of P projection that is a bijection, and because of a, b, c, d letters definitions, $Y_{a}(n)=X_{a}(n)+$ $X_{b}(n)$ and $Y_{c}(n)=X_{c}(n)+X_{d}(n)$. Thus, trivially, $Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=$ $\left\lfloor\frac{n-2}{4}\right\rfloor$.
Example :

$$
\begin{array}{ll}
Y_{a}(34) & =\#\{3+17,3+19,3+23,3+29,3+31\} \\
X_{a}(34) & =\#\{3+31,5+29,11+23,17+17\} \\
X_{b}(34) & =\#\{15+19\} \\
& \\
Y_{c}(34) & =\#\{3+21,3+25,3+27\} \\
X_{c}(34) & =\#\{7+27,13+21\} \\
X_{d}(34) & =\#\{9+25\}
\end{array}
$$

4) Let $Z_{a}(n)$ (resp. $\left.Z_{c}(n)\right)$ being the number of a letters (resp. c) that appear in $H_{n, 3}$.

Example :

$$
\begin{aligned}
& -Z_{a}(34)=\#\{3+3,3+5,3+7,3+11,3+13\}=5 \\
& -Z_{c}(34)=\#\{3+9,3+15\}=2
\end{aligned}
$$

$Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor$.

Reminding identified properties

$$
\begin{gather*}
Y_{a}(n)=X_{a}(n)+X_{b}(n) \tag{1}\\
Y_{c}(n)=X_{c}(n)+X_{d}(n) \tag{2}\\
Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}\\
Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor \tag{4}
\end{gather*}
$$

Let us add four new properties to those ones :

$$
\begin{equation*}
X_{a}(n)+X_{c}(n)=Z_{a}(n)+\delta_{2 p}(n) \tag{5}
\end{equation*}
$$

with $\delta_{2 p}(n)$ equal to 1 when n is the double of a prime number and equal to 0 otherwise.

$$
\begin{equation*}
X_{b}(n)+X_{d}(n)=Z_{c}(n)+\delta_{c-i m p}(n) \tag{6}
\end{equation*}
$$

with $\delta_{2 c-i m p}(n)$ equal to 1 when n is the double of a compound odd number and equal to 0 otherwise (when there exists k such that $n=4 k$ (doubles of even numbers) or when n is the double of a prime number).

$$
\begin{equation*}
Z_{c}(n)-Y_{a}(n)=Y_{c}(n)-Z_{a}(n)-\delta_{4 k+2}(n) \tag{7}
\end{equation*}
$$

with $\delta_{4 k+2}(n)$ equal to 1 when n is the double of an odd number and 0 otherwise.

$$
\begin{equation*}
Z_{c}(n)-Y_{a}(n)=X_{d}(n)-X_{a}(n)-\delta_{2 c-i m p}(n) \tag{8}
\end{equation*}
$$

4 Variables evolution

In this section, let us study how different variables change.
$Z_{a}(n)+Z_{c}(n)=\left\lfloor\frac{n-4}{4}\right\rfloor$ is an increasing function of n, it is increased by 1 at each n that is an even double.
$Z_{a}(n+2)=Z_{a}(n)$ and $Z_{c}(n+2)=Z_{c}(n)$ are constant when n is an even double.
$Z_{a}(n)=Z_{a}(n-2)+1$ when $\frac{n-2}{2}$ is prime ($e x: n=24$ or $n=28$, look to values array page 13 : we will express this abusively by " Z_{a} is increasing") and $Z_{c}(n)=Z_{c}(n-2)+1$ when $\frac{n-2}{2}$ is an odd compound number (ex: $n=42$ or 50 , abusively, " Z_{c} is increasing").
$Y_{a}(n)+Y_{c}(n)=X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor$ is an increasing function of n, it is increased by 1 at each n that is an odd double.

Let us see now in details how $Y_{a}(n)$ and $Y_{c}(n)$ evoluate.

In case if n is an odd double, a number more is put in $H_{n, 3}$; if this number $n-3$ is prime (resp. compound), $Y_{a}(n)=Y_{a}(n-2)+1$ (abusively " Y_{a} is increasing", ex: $n=34$) (resp. $Y_{c}(n)=Y_{c}(n-2)+1$, abusively " Y_{c} is increasing", ex:n=38).

In case if n is an even double, 4 cases are to be studied. Let us study the way decompositions set $H_{n, 3}$ evoluates.

- if $n-3$ and $\frac{n-2}{2}$ are both primes, there is a decomposition that is taken out in the bottom and another decomposition that is put in in the top of $H_{n, 3}$ and those two decompositions have two letters of the same type, so $Y_{a}(n)=Y_{a}(n-2)$ and $Y_{c}(n)=Y_{c}(n-2)$ (abusively " Y_{a} and Y_{c} constants" (ex : $n=40$);
- if $n-3$ is prime and $\frac{n-2}{2}$ is compound then $Y_{a}(n)=Y_{a}(n-2)+1$ and $Y_{c}(n)=Y_{c}(n-2)-1$ (abusively, " Y_{a} is increasing and Y_{c} is decreasing" (ex:n=32);
- if $n-3$ is compound and $\frac{n-2}{2}$ is prime then $Y_{c}(n)=Y_{c}(n-2)+1$ and $Y_{a}(n)=Y_{a}(n-2)-1$ (abusively, " Y_{a} is decreasing and Y_{c} is increasing") (ex:n=48);
- if $n-3$ and $\frac{n-2}{2}$ are both compound, there is a decomposition that is taken out in the bottom and another decomposition that is put in in the top of $H_{n, 3}$ and those two decompositions have two letters of the same type, so $Y_{a}(n)=Y_{a}(n-2)$ and $Y_{c}(n)=Y_{c}(n-2)$ (abusively, " Y_{a} and Y_{c} constants" (ex:n=52).

In annex 1 is provided an array containing different variables values for n between 14 and 100 .

5 Use gaps between variables

We are going to show in the following that $X_{a}(n)$ can never be equal to 0 for $n \geqslant C, C$ being a constant to be defined, i.e. to show that each even integer $n \geqslant C$ can be written as a sum of two primes, or in other words verifies Goldbach's conjecture.

We saw that at $\delta_{4 k+2}(n)$ and $\delta_{2 c-i m p}(n)$ near $\left(\delta_{4 k+2}(n)\right.$ and/or $\delta_{2 c-i m p}(n)$ being equal to 1 in certain cases), we have following equalities :

$$
\begin{align*}
& Z_{c}(n)-Y_{a}(n)=Y_{c}(n)-Z_{a}(n)-\delta_{4 k+2}(n) \tag{7}\\
& Z_{c}(n)-Y_{a}(n)=X_{d}(n)-X_{a}(n)-\delta_{2 c-i m p}(n) \tag{8}
\end{align*}
$$

We remind that

- $Y_{a}(n)$, counting number of primes that are between $\frac{n}{2}$ and n is equal to $\pi(n)-\pi\left(\frac{n}{2}\right)$;
- $Z_{a}(n)$ counting number of primes lesser than or equal to $\frac{n}{2}$ is equal to $\pi\left(\frac{n}{2}\right)$;
- $Z_{c}(n)$ counting number of odd compound numbers lesser than or equal to $\frac{n}{2}$ is equal to $\frac{n}{4}-\pi\left(\frac{n}{2}\right)$;
- $Y_{c}(n)$ counting number of odd compound numbers that are between $\frac{n}{2}$ and n is equal to $\frac{n}{4}-\pi(n)+\pi\left(\frac{n}{2}\right)$.

Rosser and Schoenfeld [1] note provides formula 3.5 of corollary 1 of theorem 2 that $\pi(x)>\frac{x}{\ln x}$ for every $x \geqslant 17$, and as formula 3.6 of the same corollary of the same theorem that $\pi(x)<\frac{1,25506 x}{\ln x}$ for every $x>1$.

5.1 $Z_{c}(n)>Z_{a}(n)$ inequality study

To show that $Z_{c}(n)>Z_{a}(n)$, one can simply use the fact that $Z_{c}(n)$ is increasing "many more times" than $Z_{a}(n)$ (each time $\frac{n-2}{2}$ is an odd compound number for $Z_{c}(n)$ and each time $\frac{n-2}{2}$ is a prime number for $Z_{a}(n)$ as it was shown in section 4).

To find from which value of $n, Z_{c}(n)>Z_{a}(n)$, one uses the fact that $Z_{c}(n)-Z_{a}(n)$ gap is equal to $\frac{n}{4}-2 \pi\left(\frac{n}{2}\right)$.

From formula 3.6 of corollary 1 of theorem 2 of [1], we have $2 \pi\left(\frac{n}{2}\right)<2 \frac{1,25506 n}{2(\ln n+\ln 0.5)}$ for every $n>2$.
We deduce from this $-2 \pi\left(\frac{n}{2}\right)>\frac{-1,25506 n}{\ln n+\ln 0.5}$ for every $n>2$.
$Z_{c}(n)-Z_{a}(n)$ gap is so minorable by $\frac{n(\ln n+\ln 0.5)-5,02024 n}{4(\ln n+\ln 0.5)}$. It is strictly greater than 0 for every $n \geqslant 304$ (denominator is greater or equal to 0 for every $n \geqslant 2$, numerator is strictly greater than 0 for every $\left.n>2 e^{5.02024}\right)$.

5.2 $Z_{a}(n)>Y_{a}(n)$ and $Y_{c}(n)>Z_{c}(n)$ inequalities study

To show that $Z_{a}(n)>Y_{a}(n)$, one can use once more the analysis of variables evolution provided in section 4 : when " Z_{a} is increasing", " Y_{a} is constant or is decreasing"; and when " Y_{a} is increasing" without " Z_{a} is also increasing" (when $n-3$ is prime and $\frac{n-2}{2}$ is compound), Y_{a} is increased only by 1 although its
gap to Z_{a} is very quickly very greater than 1.

To show that $Y_{c}(n)>Z_{c}(n)$, one can use once more the analysis of variables evolution provided in section $4: Y_{c}$ is increasing when $n-3$ is compound while Z_{c} is increasing when $\frac{n-2}{2}$ is compound. Z_{c} is an increasing function, there are times when Y_{c} is decreasing but not so often, and this has as consequence that over a rather small value, Z_{c} never catches Y_{c} again.

To know precisely from which values of n wished inequalities are verified, we use once more gaps values and minorations/majorations provided in [1].

To show that $Z_{a}(n)>Y_{a}(n)\left(\right.$ resp. $\left.Y_{c}(n)>Z_{c}(n)\right)$, we show that the gap

$$
Z_{a}(n)-Y_{a}(n)=Y_{c}(n)-Z_{c}(n)=2 \pi\left(\frac{n}{2}\right)-\pi(n)
$$

is always strictly greater than 0 .
We use formula 3.9 of corollary 1 of theorem 2 of Rosser and Schoenfeld that states that $\pi(x)-\pi\left(\frac{x}{2}\right)<$ $\frac{7 x}{5 \ln x}$ for every $x>1$.
We use the fact that $2 \pi\left(\frac{n}{2}\right)-\pi(n)=\left(\pi\left(\frac{n}{2}\right)-\pi(n)\right)+\pi\left(\frac{n}{2}\right)$
So we have

$$
2 \pi\left(\frac{n}{2}\right)-\pi(n)>\frac{-7 n}{5 \ln n}+\pi\left(\frac{n}{2}\right)
$$

$$
>\frac{-7 n}{5 \ln n}+\frac{n}{2(\ln n+\ln 0.5)} \quad \text { (because of formula } 3.5 \text { of corollary } 1 \text { of theorem } 2 \text { in [1]) }
$$

that is strictly greater than 0

$$
\frac{n(5 \ln n-14(\ln n+\ln 0.5))}{10 \ln n(\ln n+\ln 0.5)}>0
$$

that is equivalent to

$$
5 \ln n-14(\ln n+\ln 0.5)>0
$$

that is always true when $n \geqslant 6$.

5.3 Strict order on $Y_{a}(n), Y_{c}(n), Z_{a}(n)$ and $Z_{c}(n)$ variables

$Y_{a}(n), Z_{a}(n), Z_{c}(n)$ and $Y_{c}(n)$ variables are so strictly ordered in the following way :

$$
Y_{a}(n)<Z_{a}(n)<Z_{c}(n)<Y_{c}(n)
$$

for every $n \geqslant 304$.
A graphical representation of gaps between variables can be found above, that shows their entanglement :

$$
\pi(n)-\pi(n / 2) \downarrow_{\downarrow}^{\pi(n / 2)}<\downarrow_{Z a}^{n a / 4-\pi(n / 2)}<\downarrow_{Z c}^{n / 4-\pi(n)+\pi(n / 2)}
$$

--- ط

$Z_{c}(n)-Y_{a}(n), Y_{c}(n)-Z_{a}(n)$ and $X_{d}(n)-X_{a}(n)$ gaps are strictly greater than 0 and equal to $\frac{n}{4}-\pi(n)$.

5.4 $X_{a}(n)>0$ inequality study

To be ensured that $X_{a}(n)$ is never equal to 0 , one has to minorate $X_{d}(n)$ by $\frac{n}{4}-\pi(n)$, i.e. the value of $X_{d}(n)-X_{a}(n)$ gap.

But $X_{d}(n)=Y_{c}(n)-X_{c}(n)$.

To minorate $X_{d}(n)$, one has to minorate $Y_{c}(n)$ and to majorate $X_{c}(n)$.
$Y_{c}(n)$ is the number of odd compound numbers that are between $n / 2$ and n (associated to 3).

To minorate $Y_{c}(n)$, we use the fact that the number of odd compound numbers that are between $n / 2$ and n is equal to $\frac{n}{4}-\pi(n)+\pi\left(\frac{n}{2}\right)$.
$X_{c}(n)$, which is the number of n 's decompositions of the form prime + compound is majorable by the total number of odd compound numbers that are between $n / 2$ and n, that is itself majorable by the number of odd compound numbers that are between n and $\frac{3 n}{2}$.
$X_{c}(n)$ is so majorable by $\frac{n}{4}-\left(\pi\left(\frac{3 n}{2}\right)-\pi(n)\right)$ (the number of odd compound numbers from the interval from n to $\frac{3 n}{2}$ is $\frac{n}{4}$, the number of prime numbers in this interval is $\pi\left(\frac{3 n}{2}\right)-\pi(n)$, the number of odd compound numbers in this interval is the difference of those two numbers).
$Y_{c}(n)-X_{c}(n)$ is thus always greater than the difference between $Y_{c}(n)$'s minoration and $X_{c}(n)$'s majoration, that will give

$$
Y_{c}(n)-X_{c}(n)>\frac{n}{4}-\pi(n)+\pi\left(\frac{n}{2}\right)-\frac{n((\ln n+\ln 1.5)(\ln n-4 \times 1.25506)-1.25506 \times 6 \times \ln n)}{4(\ln n+\ln 1.5) \ln n} .
$$

$Y_{c}(n)-X_{c}(n)=X_{d}(n)$ is always greater than $\frac{n}{4}-\pi(n)$ when $n>0$ (we also make this constatation by computing all this by program).

Indeed, $Y_{c}(n)-X_{c}(n)>\frac{n}{4}-\pi(n)$ when

$$
\pi\left(\frac{n}{2}\right)-\frac{n((\ln n+\ln 1.5)(\ln n-4 \times 1.25506)-1.25506 \times 6 \times \ln n)}{4(\ln n+\ln 1.5) \ln n}>0
$$

We replace $\pi\left(\frac{n}{2}\right)$ by its minoration provided by formula 3.5 of corollary 1 of theorem 2 in [1] (that is $\left.\frac{n}{2(\ln n+\ln 0.5)}\right)$, we reduce to same denominator, that is always greater than 0 when $n \geqslant 2$ and that we forget, we are looking for condition that ensures that numerator is always strictly greater than 0 , numerator that is equal to :

$$
n[(2(\ln n+\ln 1.5) \ln n)-(\ln n+\ln 0.5)((\ln n+\ln 1.5)(\ln n-5.02024)-7.53036 \ln n)]
$$

After several computations, we obtain that numerator, with unknown $\ln n$, is equal to polynom

$$
-(\ln n)^{3}+14.6755387366(\ln n)^{2}-2.48889541216(\ln n)-0.26611665186
$$

The biggest root of this polynom is nearly equal to 14.502656936497 from which exponential is equal to 1988034.33365 . Difference between $X_{d}(n)$ and $X_{a}(n)$ is thus always greater than $\frac{n}{4}-\pi(n)$ for every
$n \geqslant 1988034.33365$.

We can thus conclude that for every $n \geqslant 1988034.33365$ (necessary condition to have $X_{d}(n)-X_{a}(n)>$ $\left.\frac{n}{4}-\pi(n)\right), X_{a}(n)$ (number of n 's decompositions as a sum of two primes) is strictly greater than 0 .

In annex 2 are provided graphic representations of sets bijections for cases $n=32,34,98$ and 100 .

The file http : //denise.vella.chemla.free.fr/annexes.pdf contains

- an historical recall of a Laisant's note in which he presented yet in 1897 the idea of "strips" of odd numbers to be put in regard and to be colorated to see Goldbach decompositions ;
- a program and its execution that implement ideas presented here.

6 Demonstrations

6.1 Utilitaries

Let us demonstrate that if n is an odd number double (i.e. of the form $4 k+2$), then $\left\lfloor\frac{n-2}{4}\right\rfloor=\left\lfloor\frac{n-4}{4}\right\rfloor+1$.
Indeed, the left part of the equality is equal to $\left\lfloor\frac{(4 k+2)-2}{4}\right\rfloor=\left\lfloor\frac{4 k}{4}\right\rfloor=k$.
The right part of the equality is equal to $\left\lfloor\frac{(4 k+2)-4}{4}\right\rfloor+1=\left\lfloor\frac{4 k-2}{4}\right\rfloor+1=(k-1)+1=k$.
Let us demonstrate that if n is an even number double (i.e. of the $4 k$), then $\left\lfloor\frac{n-2}{4}\right\rfloor=\left\lfloor\frac{n-4}{4}\right\rfloor$. $\left\lfloor\frac{4 k-2}{4}\right\rfloor=k-1$ and $\left\lfloor\frac{4 k-4}{4}\right\rfloor=k-1$.

We can also express this by the following way : if n is an odd number double, $\left\lfloor\frac{n-2}{4}\right\rfloor=\frac{n-2}{4}=$ $\left\lfloor\frac{n-4}{4}\right\rfloor+1$ although if n is an even number double, $\left\lfloor\frac{n-2}{4}\right\rfloor=\frac{n-4}{4}=\left\lfloor\frac{n-4}{4}\right\rfloor$.

$6.25,6$ and 8 properties

5,6 and 8 properties follows directly from variables definitions.

6.2.1 Property 5

Property 5 states that $X_{a}(n)+X_{c}(n)=Z_{a}(n)+\delta_{2 p}(n)$ with $\delta_{2 p}(n)$ that is equal to 1 in the case if n is a prime number double and that is equal to 0 otherwise.

By definition, $X_{a}(n)+X_{c}(n)$ counts number of n 's decompositions of the form prime $+x$ with prime $\leqslant n / 2$. But by the fact that $Z_{a}(n)$ counts on its side number of decompositions of the form $3+$ prime with prime $<n / 2$, adding $\delta_{2 p}$ to $Z_{a}(n)$ permits to ensure the equality's invariance in all cases and in particular when n is a prime number double.

6.2.2 Property 6

Property 6 states that $X_{b}(n)+X_{d}(n)=Z_{c}(n)+\delta_{2 c-i m p}$ with $\delta_{2 c-i m p}$ that is equal to 1 in the case if n is a compound odd number, and is equal to 0 otherwise.

By definition, $X_{b}(n)+X_{d}(n)$ counts the number of decompositions of the form compound $+x$ with compound $\leqslant n / 2$. But by the fact that $Z_{c}(n)$ counts on its side number of decompositions of the form $3+$ compound with compound $<n / 2$, adding $\delta_{2 c-i m p}$ to $Z_{c}(n)$ permits to ensure the equality's invariance in all cases and in particular when n is an odd compound double.

6.2.3 Property 8

Property 8 states that $Z_{c}(n)-Y_{a}(n)=X_{d}(n)-X_{a}(n)-\delta_{2 c-i m p}$ with $\delta_{2 c-i m p}$ that is equal to 1 if n is an odd compound double and is equal to 0 otherwise.

By definition, $Z_{c}(n)$ counts the number of odd compound numbers strictly lesser than $n / 2$. It counts also the number of n 's decompositions of the form compound $+x$ with compound $<n / 2$ (let us call E this decompositions set).

By definition, $Y_{a}(n)$ counts the number of prime numbers strictly greater than $n / 2$. It counts also the number of n 's decompositions of the form $x+$ prime with prime $>n / 2$ (let us call F this decompositions set).
n 's decompositions of the form compound + prime are at the same time in E and in F. By computing $Z_{c}(n)-Y_{a}(n)$, we are computing the cardinality of a set that is equal to $X_{d}(n)-X_{a}(n)$ by definition of what $Y_{a}(n), Z_{c}(n), X_{d}(n)$ and $X_{a}(n)$ variables count.

6.2.4 Property 7

Let us demonstrate that $Z_{c}(n)-Y_{a}(n)=Y_{c}(n)-Z_{a}(n)-\delta_{4 k+2}$ with $\delta_{4 k+2}$ that is equal to 1 if n is an odd double (there exists some $k \geqslant 3$ such that $n=4 k+2$) and is equal to 0 otherwise.

One uses a recurrence reasoning :
i) One initialises recurrences according to the 3 sorts of numbers to be envisaged : even doubles (of the form $4 k$, like 16), odd doubles (of the form $4 k+2$) that are prime (like 14) or that are compound (like 18).

Property 7 is true for $n=14$ because $Z_{c}(14)=0, Y_{a}(14)=2, Y_{c}(14)=1, Z_{a}(14)=2$ and $\delta_{4 k+2}(14)=1$ and thus $Z_{c}(14)-Y_{a}(14)=Y_{c}(14)-Z_{a}(14)-\delta_{4 k+2}(14)$;
Property 7 is true for $n=16$ because $Z_{c}(16)=0, Y_{a}(16)=2, Y_{c}(16)=1, Z_{a}(16)=3$ and $\delta_{4 k+2}(16)=0$ and thus $Z_{c}(16)-Y_{a}(16)=Y_{c}(16)-Z_{a}(16)-\delta_{4 k+2}(16)$;
Property 7 is true for $n=18$ because $Z_{c}(18)=0, Y_{a}(18)=2, Y_{c}(18)=2, Z_{a}(18)=3$ and $\delta_{4 k+2}(18)=1$ and thus $Z_{c}(18)-Y_{a}(18)=Y_{c}(18)-Z_{a}(18)-\delta_{4 k+2}(18) ;$
ii) We rewrite property in the following form $Z_{a}(n)+Z_{c}(n)+\delta_{4 k+2}=Y_{a}(n)+Y_{c}(n)$.

Four cases must be considered : two cases in which n is an odd double (prime or compound) and $n+2$ is an even double and two cases in which n is an even double and $n+2$ is an the double of an odd number (that is prime or compound).
iia) n even double and $n+2$ prime double (ex $: n=56$) :

n	$\delta_{2 p}$	$\delta_{2 c-i m p}$	$\delta_{4 k+2}$
n	0	0	0
$n+2$	1	0	1

One states the hypothesis that property 7 is verified by n,

$$
\begin{equation*}
Z_{a}(n)+Z_{c}(n)+\delta_{4 k+2}(n)=Y_{a}(n)+Y_{c}(n) \tag{H}
\end{equation*}
$$

Let us demonstrate the property is true for $n+2$,

$$
\begin{equation*}
Z_{a}(n+2)+Z_{c}(n+2)+\delta_{4 k+2}(n+2)=Y_{a}(n+2)+Y_{c}(n+2) \tag{Ccl}
\end{equation*}
$$

One has $Z_{a}(n+2)=Z_{a}(n)$ and $Z_{c}(n+2)=Z_{c}(n)$.

Recall property 3 concerning $Y_{a}(n)$ and $Y_{c}(n)$:

$$
\begin{equation*}
Y_{a}(n)+Y_{c}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}
\end{equation*}
$$

In (Ccl), we can, by recurrence hypothesis and by proprerty (3), replace the left part of the equality by $Z_{a}(n)+Z_{c}(n)+1$ and than by $Y_{a}(n)+Y_{c}(n)+1$ (because $\left.(\mathrm{H})\right)$ and then by $\left\lfloor\frac{n-2}{4}\right\rfloor+1$ (because (3)) that is equal to $\left\lfloor\frac{n}{4}\right\rfloor$.

But in (Ccl), we can also replace the right part of the equality by $\left\lfloor\frac{n}{4}\right\rfloor$ because of property (3).
There is also, for $n+2$, equality between left and right parts of the equality, i.e. property 7 is verified by $n+2$. From the hypothesis that property is verified by n, we demonstrated that property is true for $n+2$.
iib) n even double and $n+2$ odd compound double ($e x: n=48$):

n	$\delta_{2 p}$	$\delta_{2 c-i m p}$	$\delta_{4 k+2}$
n	0	0	0
$n+2$	0	1	1

One states the hypothesis that property 7 is verified by n,

$$
\begin{equation*}
Z_{a}(n)+Z_{c}(n)+\delta_{4 k+2}(n)=Y_{a}(n)+Y_{c}(n) \tag{H}
\end{equation*}
$$

Let us demonstrate the property is verified by $n+2$,

$$
\begin{equation*}
Z_{a}(n+2)+Z_{c}(n+2)+\delta_{4 k+2}(n+2)=Y_{a}(n+2)+Y_{c}(n+2) \tag{Ccl}
\end{equation*}
$$

One has $Z_{a}(n+2)=Z_{a}(n)$ and $Z_{c}(n+2)=Z_{c}(n)$.

And one has also $Y_{a}(n+2)=Y_{a}(n)+1$ and $Y_{c}(n+2)=Y_{c}(n)$.

Let us recall property 3 concerning $Y_{a}(n)$ and $Y_{c}(n)$:

$$
\begin{equation*}
Y_{a}(n)+Y_{c}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}
\end{equation*}
$$

In $(C c l)$, we can, by recurrence hypothesis and property (3), replace the left part of the equality by $Z_{a}(n)+Z_{c}(n)+1$ and the by $Y_{a}(n)+Y_{c}(n)+1($ by $(\mathrm{H}))$ and then by $\left\lfloor\frac{n-2}{4}\right\rfloor+1$ (by $\left.(3)\right)$ that is equal to $\left\lfloor\frac{n}{4}\right\rfloor$.

But in (Ccl), we can also replace the right part of the equality by $\left\lfloor\frac{n}{4}\right\rfloor$ because of evolutions of $Y_{a}(n)$ and $Y_{c}(n)$.
There is also, for $n+2$, equality between left and right parts of the equality, i.e. property 7 is verified by $n+2$. From the hypothesis that property is verified by n, we demonstrated that property is verified by $n+2$.
iic) n prime double and $n+2$ even double (ex $: n=74$) :

n	$\delta_{2 p}$	$\delta_{2 c-i m p}$	$\delta_{4 k+2}$
n	1	0	1
$n+2$	0	0	0

One states the hypothesis that property 7 is verified by n,

$$
\begin{equation*}
Z_{a}(n)+Z_{c}(n)+\delta_{4 k+2}(n)=Y_{a}(n)+Y_{c}(n) \tag{H}
\end{equation*}
$$

Let us demonstrate that property is verified by $n+2$,

$$
\begin{equation*}
Z_{a}(n+2)+Z_{c}(n+2)+\delta_{4 k+2}(n+2)=Y_{a}(n+2)+Y_{c}(n+2) \tag{Ccl}
\end{equation*}
$$

One has $Z_{a}(n+2)=Z_{a}(n)+1$ and $Z_{c}(n+2)=Z_{c}(n)$.

Let us recall property 3 concerning $Y_{a}(n)$ and $Y_{c}(n)$:

$$
\begin{equation*}
Y_{a}(n)+Y_{c}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}
\end{equation*}
$$

In (Ccl), we can, by recurrence hypothesis and property (3), replace the left part of the equality by $Z_{a}(n)+Z_{c}(n)+1$ and then by $Y_{a}(n)+Y_{c}(n)$ (because $\left.(\mathrm{H})\right)$ and then by $\left\lfloor\frac{n-2}{4}\right\rfloor$ (by (3)) that is equal to $\left\lfloor\frac{n}{4}\right\rfloor$.

But in (Ccl), one can also replace the right part of the equality by $\left\lfloor\frac{n}{4}\right\rfloor$ because of property (3).
There is once more, for $n+2$, equality between left and right part of the equality, i.e. property 7 is verified by $n+2$. From the hypothesis that property is true for n, we demonstrated that property is verified by $n+2$.
iid) n odd compound double and $n+2$ even double (ex : $n=70$) :

n	$\delta_{2 p}$	$\delta_{2 c-i m p}$	$\delta_{4 k+2}$
n	0	1	1
$n+2$	0	0	0

We state the hypothesis that property 7 is true for n,

$$
\begin{equation*}
Z_{a}(n)+Z_{c}(n)+\delta_{4 k+2}(n)=Y_{a}(n)+Y_{c}(n) \tag{H}
\end{equation*}
$$

Let us demonstrate that it is true for

$$
\begin{equation*}
Z_{a}(n+2)+Z_{c}(n+2)+\delta_{4 k+2}(n+2)=Y_{a}(n+2)+Y_{c}(n+2) \tag{Ccl}
\end{equation*}
$$

One has $Z_{a}(n+2)=Z_{a}(n)$ and $Z_{c}(n+2)=Z_{c}(n)+1$.

Let us recall property 3 concerning $Y_{a}(n)$ and $Y_{c}(n)$:

$$
\begin{equation*}
Y_{a}(n)+Y_{c}(n)=\left\lfloor\frac{n-2}{4}\right\rfloor \tag{3}
\end{equation*}
$$

In $(C c l)$, we can, by recurrence hypothesis and property (3), replace the left part of the equality by $Z_{a}(n)+Z_{c}(n)+1$ and then by $Y_{a}(n)+Y_{c}(n)($ by $(\mathrm{H}))$ and then by $\left\lfloor\frac{n-2}{4}\right\rfloor($ by $(3))$ that is equal to $\left\lfloor\frac{n}{4}\right\rfloor$.

But in (Ccl), one can also replace the right part of the equality by $\left\lfloor\frac{n}{4}\right\rfloor$ because of property (3).
There is once more, for $n+2$, equality between left and right parts of the equality, i.e. property 7 is verified by $n+2$. From the hypothesis that property is verified by n, we demonstrated property is verified by $n+2$.

Annex 1 : variables values array for n between 14 and 100

n	$X_{a}(n)$	$X_{b}(n)$	$X_{c}(n)$	$X_{d}(n)$	$Y_{a}(n)$	$Y_{c}(n)$	$\left\|\frac{n-2}{4}\right\|$	$Z_{a}(n)$	$Z_{c}(n)$	$\left\lfloor\frac{n-4}{4}\right\rfloor$	$\delta_{2 p}(n)$	$\delta_{2 c-i m p}(n)$	$\delta_{4 k+2}(n)$
14	2	0	1	0	2	1	3	2	0	2	1	0	1
16	2	0	1	0	2	1	3	3	0	3	0	0	0
18	2	0	1	1	2	2	4	3	0	3	0	1	1
20	2	1	1	0	3	1	4	3	1	4	0	0	0
22	3	1	1	0	4	1	5	3	1	4	1	0	1
24	3	0	1	1	3	2	5	4	1	5	0	0	0
26	3	1	2	0	4	2	6	4	1	5	1	0	1
28	2	1	3	0	3	3	6	5	1	6	0	0	0
30	3	0	2	2	3	4	7	5	1	6	0	1	1
32	2	2	3	0	4	3	7	5	2	7	0	0	0
34	4	1	2	1	5	3	8	5	2	7	1	0	1
36	4	0	2	2	4	4	8	6	2	8	0	0	0
38	2	2	5	0	4	5	9	6	2	8	1	0	1
40	3	1	4	1	4	5	9	7	2	9	0	0	0
42	4	0	3	3	4	6	10	7	2	9	0	1	1
44	3	2	4	1	5	5	10	7	3	10	0	0	0
46	4	2	4	1	6	5	11	7	3	10	1	0	1
48	5	0	3	3	5	6	11	8	3	11	0	0	0
50	4	2	4	2	6	6	12	8	3	11	0	1	1
52	3	3	5	1	6	6	12	8	4	12	0	0	0
54	5	1	3	4	6	7	13	8	4	12	0	1	1
56	3	4	5	1	7	6	13	8	5	13	0	0	0
58	4	3	5	2	7	7	14	8	5	13	1	0	1
60	6	0	3	5	6	8	14	9	5	14	0	0	0
62	3	4	7	1	7	8	15	9	5	14	1	0	1
64	5	2	5	3	7	8	15	10	5	15	0	0	0
66	6	1	4	5	7	9	16	10	5	15	0	1	1
68	2	5	8	1	7	9	16	10	6	16	0	0	0
70	5	3	5	4	8	9	17	10	6	16	0	1	1
72	6	2	4	5	8	9	17	10	7	17	0	0	0
74	5	4	6	3	9	9	18	10	7	17	1	0	1
76	5	4	6	3	9	9	18	11	7	18	0	0	0
78	7	2	4	6	9	10	19	11	7	18	0	1	1
80	4	5	7	3	9	10	19	11	8	19	0	0	0
82	5	5	7	3	10	10	20	11	8	19	1	0	1
84	8	1	4	7	9	11	20	12	8	20	0	0	0
86	5	5	8	3	10	11	21	12	8	20	1	0	1
88	4	5	9	3	9	12	21	13	8	21	0	0	0
90	9	0	4	9	9	13	22	13	8	21	0	1	1
92	4	6	9	3	10	12	22	13	9	22	0	0	0
94	5	5	9	4	10	13	23	13	9	22	1	0	1
96	7	2	7	7	9	14	23	14	9	23	0	0	0
98	3	6	11	4	9	15	24	14	9	23	0	1	1
100	6	4	8	6	10	14	24	14	10	24	0	0	0

n	$X_{a}(n)$	$X_{b}(n)$	$X_{c}(n)$	$X_{d}(n)$	$Y_{a}(n)$	$Y_{c}(n)$	$\frac{n-2}{4}$	$Z_{a}(n)$	$Z_{c}(n)$	$\frac{n-4}{4}$	$\delta_{2 p}$	$\delta_{2 c-i m p}$	$\delta_{4 k+2}$
999998	4206	32754	37331	175708	36960	213039	249999	41537	208461	249998	0	1	1
1000000	5402	31558	36135	176904	36960	213039	249999	41537	208462	249999	0	1	0
9999998	28983	287084	319529	1864403	316067	2183932	2499999	348511	2151487	2499998	1	0	1
10000000	38807	277259	309705	1874228	316066	2183933	2499999	348512	2151487	2499999	0	1	0

Annex 2 : sets bijections

- Case $n=32$

$Z_{a}=X_{a}+X_{c}=5$
$Z_{c}=X_{b}+X_{d}=2$
$Z_{a}+Z_{c}=\left\lfloor\frac{n-4}{4}\right\rfloor=7$

- Case $n=34$
$Z_{a}=X_{a}+X_{c}=5$
$Z_{c}=X_{b}+X_{d}=2$
$Z_{a}+Z_{c}=\left\lfloor\frac{n-4}{4}\right\rfloor=7$

$$
\begin{aligned}
& Y_{a}=X_{a}+X_{b}=5 \\
& Y_{c}=X_{c}+X_{d}=3 \\
& \quad Y_{a}+Y_{c}=\left\lfloor\frac{n-2}{4}\right\rfloor=8
\end{aligned}
$$

- Case $n=98$

- Case $n=100$

Annex 3 : rewriting rules and automata theory

This annex studies variables $X_{a}(n), X_{b}(n), X_{c}(n), X_{d}(n)$ evolution that we deduce from analyzing words rewriting rules, presented from automata theory point of view.

If we consider each line of the global array as a word on alphabet $A=\{a, b, c, d\}, n+2$ even number's word is obtained by the following way from even number n 's word :

- first letter of $n+2$'s word is a if $n-3$ is prime and c otherwise (this first letter is the only one that introduces indeterminism because it doesn't belong to n 's word and it can't be deduced from n 's word letters;
- following letters of $n+2$'s word are obtained by applying parallely following rewriting rules to n 's word :

$a a \rightarrow a$	(1)
$a b \rightarrow b$	(2)
$a c \rightarrow a$	(3)
$a d \rightarrow b$	(4)
$b a \rightarrow a$	(5)
$b b \rightarrow b$	(6)
$b c \rightarrow a$	(7)
$b d \rightarrow b$	(8)
$c a \rightarrow c$	(9)
$c b \rightarrow d$	(10)
$c c \rightarrow c$	(11)
$c d \rightarrow d$	(12)
$d a \rightarrow c$	(13)
$d b \rightarrow d$	(14)
$d c \rightarrow c$	(15)
$d d \rightarrow d$	(16)

We can represent those rewriting rules by the two above deterministic automata, from which edges are labelled by applicable rules to one given letter of n 's word :

12, 16

- finally, one letter concatenation at the end of the word, in case if n is an even double (i.e. of the form $4 k$) obeys to following rule :
- if n 's word has an a or b letter as last letter, after having obtained $n+2$'s word by applying rewriting rules, we concatenate a letter a to it (at last position) ;
- if n 's word has a c or d letter as last letter, after having obtained $n+2$'s word by applying rewriting rules, we concatenate a letter d to it (at last position).

If we take as convention to notate $X_{x y}(n)$ occurences number of $x y$ letters sequences in n 's word, the following equalities provide a, b, c or d letters numbers evolution when passing from n 's word to $n+2$'s word.

$$
\begin{aligned}
& X_{a}(n+2)=X_{a}(n)-X_{c a}(n)-X_{d a}(n)+X_{a c}(n)+X_{b c}(n)+\delta_{n-3 _i s _p r i m e}(n)+\delta_{a}(n) \\
& X_{b}(n+2)=X_{b}(n)-X_{c b}(n)-X_{d b}(n)+X_{a d}(n)+X_{b d}(n)+\delta_{n-3 _i s _p r i m e}(n) \\
& X_{c}(n+2)=X_{c}(n)-X_{a c}(n)-X_{b c}(n)+X_{c a}(n)+X_{d a}(n)+\delta_{n-3 _i s _p r i m e}(n) \\
& X_{d}(n+2)=X_{d}(n)-X_{a d}(n)-X_{b d}(n)+X_{c b}(n)+X_{d b}(n)+\delta_{n-3 _i s _p r i m e}(n)+\delta_{d}(n)
\end{aligned}
$$

with $\delta_{a}(n)$ that is equal to 1 if n is an even number (i.e. of the form $4 k$) and if n 's word last letter is an a or b letter, $\delta_{d}(n)$ that is equal to 1 if n is an even number (i.e. of the form $4 k$) and if n 's word last letter is a c or d letter and finally with $\delta_{n-3}(n)$ that is equal to 1 if $n-3$ is prime and equal to 0 otherwise.

Bibliographie

[1] J. Barkley Rosser, Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics, 1962.

