Even numbers'Goldbach components are systematically indicated within parentheses after the even number considered, preceded by the letters $G C$.

1 Even numbers of the form $n=6 m$ from 144 to 30

The double sieve of Eratosthenes application is presented in a table in which $\left\lfloor\frac{n}{12}\right\rfloor$ numbers of the top part belong to the arithmetic progression $6 k-1$ while $\left\lfloor\frac{n-6}{12}\right\rfloor$ numbers of the bottom part belong to the arithmetic progression $6 k+1$.

We note in the second column the result of the first pass of the sieve (elimination of numbers that are congruent to 0 according to a modulus smaller than or equal to \sqrt{n}, to find prime numbers between \sqrt{n} and $n / 2$).

We note in the third column result of the second pass of the sieve by specifying the shared congruence with n (to find numbers whose complementary to n is prime).

All modules smaller than \sqrt{n} except those of n 's euclidean decomposition appear in third column (for modules that divide n, first and second pass eliminate same numbers).

The same module can't be found on the same line in second and third column.

- $n=144 \quad(G C: 5,7,13,17,31,37,41,43,47,61,71)$
$n=2^{4} .3^{2}$.
$n / 2=72$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 4(\bmod 5), n \equiv 4(\bmod 7), n \equiv 1(\bmod 11)$.

$5(p)$	$0(\bmod 5)$		$139(p)$	
$11(p)$	$0(\bmod 11)$	$4(\bmod 7)$	133	
$17(p)$		$1(\bmod 11)$	$127(p)$	$17+127$
$23(p)$		$4(\bmod 5)$	121	
$29(p)$			115	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$109(p)$	
$41(p)$		$4(\bmod 7)$	$103(p)$	$41+103$
$47(p)$		$4(\bmod 5)$	$97(p)$	$47+97$
$53(p)$			91	
$59(p)$			85	
65	$0(\bmod 5)$	$4(\bmod 5)$	$73(p)$	$71+73$
$71(p)$		$4(\bmod 7)$	$137(p)$	
$7(p)$	$0(\bmod 7)$		$131(p)$	$13+131$
$13(p)$			125	
$19(p)$			119	
25	$0(\bmod 5)$	$413(p)$	$31+113$	
$31(p)$			$107(p)$	$37+107$
$37(p)$			$101(p)$	$43+101$
$43(p)$			95	
49	$0(\bmod 7)$	$0(\bmod 5)$	$89(p)$	
55	$0(\bmod 5)$ and $0(\bmod 11)$		$83(p)$	$61+83$
$61(p)$		$4(\bmod 7)$ and $1(\bmod 11)$	77	
$67(p)$				

- $n=138 \quad(G C: 7,11,29,31,37,41,59,67)$
$n=2.3 .23$.
$n / 2=69$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 3(\bmod 5), n \equiv 5(\bmod 7), n \equiv 6(\bmod 11)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 7)$	133	
$11(p)$	$0(\bmod 11)$		$127(p)$	
$17(p)$		$6(\bmod 11)$	121	
$23(p)$			115	
$29(p)$			$109(p)$	$29+109$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$103(p)$	
$41(p)$		$5(\bmod 7)$	$97(p)$	$41+97$
$47(p)$		$3(\bmod 5)$	91	
$53(p)$			85	
59		$3(\bmod 5)$	$79(p)$	$59+79$
65	$0(\bmod 5)$	$5(\bmod 7)$	$73(p)$	
$7(p)$	$0(\bmod 7)$		$131(p)$	
$13(p)$			125	
$19(p)$			119	
25	$0(\bmod 5)$	$313(p)$		
$31(p)$			$107(p)$	$31+107$
$37(p)$			$101(p)$	$37+101$
$43(p)$			95	
49	$0(\bmod 7)$		$89(p)$	
55	$0(\bmod 5)$ and $0(\bmod 11)$		$83(p)$	
$61(p)$		$5(\bmod 7)$ and $6(\bmod 11)$	77	
67			$71(p)$	$67+71$

- $n=132 \quad(G C: 5,19,23,29,31,43,53,59,61)$
$n=2^{2}$.3.11.
$n / 2=66$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 2(\bmod 5), n \equiv 6(\bmod 7), n \equiv 0(\bmod 11)$.

$5(p)$	$0(\bmod 5)$		$127(p)$	
$11(p)$	$0(\bmod 11)$		121	
$17(p)$		$2(\bmod 5)$	115	
$23(p)$			$109(p)$	$23+109$
$29(p)$		$103(p)$	$29+103$	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$97(p)$	
$41(p)$		$6(\bmod 7)$	91	
$47(p)$		$2(\bmod 5)$	85	
$53(p)$			$79(p)$	$53+79$
$59(p)$			$73(p)$	$59+73$
65	$0(\bmod 5)$	$2(\bmod 5)$	125	
$7(p)$	$0(\bmod 7)$	$6(\bmod 7)$	119	
$13(p)$			$113(p)$	$19+113$
$19(p)$			$107(p)$	
25	$0(\bmod 5)$	$2(\bmod 5)$	$101(p)$	35
$31(p)$			$89(p)$	$43+101$
$37(p)$			$83(p)$	
$43(p)$			77	
49	$0(\bmod 7)$	$0(\bmod 5)$ and $0(\bmod 11)$		$71(p)$
55			$61+71$	
$61(p)$				

- $n=126 \quad(D G: 13,17,19,23,29,37,43,47,53,59)$
$n=2.3^{2} .7$.
$n / 2=63$.
$11<\sqrt{n}<13$. Les modules à considérer sont 5,7 and 11 .
$n \equiv 1(\bmod 5), n \equiv 0(\bmod 7), n \equiv 5(\bmod 11)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 11)$	121	
$11(p)$	$0(\bmod 11)$	$1(\bmod 5)$	115	
17 (p)			109 (p)	$17+109$
23 (p)			103 (p)	$23+103$
$29(p)$			97 (p)	$29+97$
35	$0(\bmod 5)$ and $0(\bmod 7)$		91	
$41(p)$		$1(\bmod 5)$	85	
47 (p)			$79(p)$	$47+79$
53 (p)			73 (p)	$53+73$
$59(p)$			67 (p)	$59+67$
7 (p)	$0(\bmod 7)$		119	
13 (p)			113 (p)	$13+113$
19 (p)			107 (p)	$19+107$
25	$0(\bmod 5)$		101 (p)	
$31(p)$		$1(\bmod 5)$	95	
37 (p)			89 (p)	$37+89$
43 (p)			$83(p)$	$43+83$
49	$0(\bmod 7)$	$5(\bmod 11)$	77	
55	$0(\bmod 5)$ and $0(\bmod 11)$		$71(p)$	
$61(p)$		$1(\bmod 5)$	65	

- $n=120 \quad(G C: 7,11,13,17,19,23,31,37,41,47,53,59)$
$n=2^{3}$.3.5.
$n / 2=60$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 1(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		115	
$11(p)$			$109(p)$	$11+109$
$17(p)$			$103(p)$	$17+103$
$23(p)$		$1(\bmod 7)$	97	91
$29(p)$			85	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$79(p)$	$41+79$
$41(p)$			$73(p)$	$47+73$
$47(p)$			$67(p)$	$53+67$
$53(p)$			$61(p)$	$59+61$
$59(p)$			$103(p)$	
$7(p)$	$0(\bmod 7)$	$97(p)$	$13+97$	
$13(p)$			$91(p)$	$19+91$
$19(p)$			85	
25	$0(\bmod 5)$		$79(p)$	$31+79$
$31(p)$			$73(p)$	$37+73$
$37(p)$			$67(p)$	
$43(p)$			$61(p)$	
49	$0(\bmod 7)$		55	
55	$0(\bmod 5)$ and $0(\bmod 11)$			

- $n=114 \quad(G C: 5,7,11,13,17,31,41,43,47,53)$
$n=2.3 .19$.
$n / 2=57$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 2(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$109(p)$	
$11(p)$			$103(p)$	$11+103$
$17(p)$			$97(p)$	$17+97$
$23(p)$		$2(\bmod 7)$	91	
$29(p)$		$4(\bmod 5)$	85	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$79(p)$	
$41(p)$			$73(p)$	$41+73$
$47(p)$			$67(p)$	$47+67$
$53(p)$			$61(p)$	$53+61$
$7(p)$	$0(\bmod 7)$		$107(p)$	
$13(p)$			$101(p)$	$13+101$
$19(p)$			85	
25	$0(\bmod 5)$	$2(\bmod 7)$	77	77
$31(p)$			$71(p)$	$43+71$
$37(p)$		$4(\bmod 5)$	65	
$43(p)$			$59(p)$	
49	$0(\bmod 7)$			
55	$0(\bmod 5)$ and $0(\bmod 11)$		$81+83$	

- $n=108 \quad(G C: 5,7,11,19,29,37,41,47)$
$n=2^{2} .3^{3}$.
$n / 2=54$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 3(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$103(p)$	
$11(p)$			$97(p)$	$11+97$
$17(p)$		$3(\bmod 7)$	91	
$23(p)$		$3(\bmod 5)$	85	
$29(p)$			$79(p)$	$29+79$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$73(p)$	
$41(p)$			$67(p)$	$41+67$
$47(p)$		$3(\bmod 5)$	55	$51\|\mid$
$53(p)$			$101(p)$	
$7(p)$	$0(\bmod 7)$	$3(\bmod 5)$	95	
$13(p)$			$89(p)$	$19+89$
$19(p)$		$3(\bmod 7)$	$83(p)$	77
25	$0(\bmod 5)$		$71(p)$	$37+71$
$31(p)$		$3(\bmod 5)$	65	
$37(p)$			$59(p)$	
$43(p)$				
49	$0(\bmod 7)$			

- $n=102 \quad(G C: 5,13,19,23,29,31,41,43)$
$n=2.3 .17$.
$n / 2=51$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 4(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$97(p)$	
$11(p)$		$4(\bmod 7)$	91	
$17(p)$		$2(\bmod 5)$	85	
$23(p)$			$79(p)$	$23+79$
$29(p)$			$73(p)$	$29+73$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$67(p)$	
$41(p)$			$61(p)$	$41+61$
$47(p)$		$2(\bmod 5)$	55	
$7(p)$	$0(\bmod 7)$	$2(\bmod 5)$	95	
$13(p)$			$89(p)$	$13+89$
$19(p)$			$83(p)$	$19+83$
25	$0(\bmod 5)$			77
$31(p)$		$2(\bmod 5)$	65	65
$37(p)$			$59(p)$	$43+59$
$43(p)$			$53(p)$	
49	$0(\bmod 7)$			

- $n=96 \quad(G C: 7,13,17,23,29,37,43)$
$n=2^{5} .3$.
$n / 2=48$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 5(\bmod 7)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 7)$	91	
$11(p)$		$1(\bmod 5)$	85	
$17(p)$			$79(p)$	$17+79$
$23(p)$			$73(p)$	$23+73$
$29(p)$			$67(p)$	$29+67$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$61(p)$	
$41(p)$		$1(\bmod 5)$	55	
$47(p)$		$5(\bmod 7)$	49	
$7(p)$	$0(\bmod 7)$		$89(p)$	
$13(p)$			$83(p)$	$13+83$
$19(p)$		$5(\bmod 7)$	77	
25	$0(\bmod 5)$		$71(p)$	
$31(p)$		$1(\bmod 5)$	65	
$37(p)$			$59(p)$	$37+59$
$43(p)$			$53(p)$	$43+53$

- $n=90 \quad(G C: 7,11,17,19,23,29,31,37,43)$
$n=2.3^{2} .5$.
$n / 2=45$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 6(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		85	
$11(p)$			$79(p)$	$11+79$
$17(p)$			$73(p)$	$17+73$
$23(p)$			$67(p)$	$23+67$
$29(p)$			$61(p)$	$29+61$
35	$0(\bmod 5)$ and $0(\bmod 7)$		55	
$41(p)$		$6(\bmod 7)$	49	
$7(p)$	$0(\bmod 7)$		$83(p)$	
$13(p)$		$6(\bmod 7)$	77	
$19(p)$			$71(p)$	$19+71$
25	$0(\bmod 5)$		65	
$31(p)$			$59(p)$	$31+59$
$37(p)$			$53(p)$	$37+53$
$43(p)$			$47(p)$	$43+47$

- $n=84 \quad(G C: 5,11,13,17,23,31,37,41)$
$n=2^{2} .3 .7$.
$n / 2=42$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 0(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$79(p)$	
$11(p)$			$73(p)$	$11+73$
$17(p)$			$67(p)$	$17+67$
$23(p)$			$61(p)$	$23+61$
$29(p)$		$4(\bmod 5)$	55	
35	$0(\bmod 5)$ and $0(\bmod 7)$		49	
$41(p)$			$43(p)$	$41+43$
$7(p)$	$0(\bmod 7)$		77	
$13(p)$			$71(p)$	$13+71$
$19(p)$		$4(\bmod 5)$	65	
25	$0(\bmod 5)$		$59(p)$	
$31(p)$			$53(p)$	$31+53$
$37(p)$			$47(p)$	$37+47$

- $n=78 \quad(G C: 5,7,11,17,19,31,37)$
$n=2.3 .13$.
$n / 2=39$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 1(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$73(p)$	
$11(p)$			$67(p)$	$11+67$
$17(p)$			$61(p)$	$17+61$
$23(p)$		$3(\bmod 5)$	55	
$29(p)$		$1(\bmod 7)$	49	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$43(p)$	
$7(p)$	$0(\bmod 7)$		$71(p)$	
$13(p)$		$3(\bmod 5)$	65	
$19(p)$			$59(p)$	$19+59$
25	$0(\bmod 5)$		$53(p)$	
$31(p)$			$47(p)$	$31+47$
$37(p)$			$41(p)$	$37+41$

- $n=72 \quad(G C: 5,11,13,19,29,31)$
$n=2^{3} .3^{2}$.
$n / 2=36$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 2(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$67(p)$	
$11(p)$			$61(p)$	$11+61$
$17(p)$		$2(\bmod 5)$	55	
$23(p)$		$2(\bmod 7)$	49	
$29(p)$		$43(p)$	$29+43$	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$37(p)$	
$7(p)$	$0(\bmod 7)$	$2(\bmod 5)$	65	
$13(p)$			$59(p)$	$13+59$
$19(p)$			$53(p)$	$19+53$
25	$0(\bmod 5)$		$47(p)$	
$31(p)$			$41(p)$	$31+41$

- $n=66 \quad(G C: 5,7,13,19,23,29)$
$n=2.3 .11$.
$n / 2=33$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 3(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$61(p)$	
$11(p)$		$1(\bmod 5)$	55	
$17(p)$		$3(\bmod 7)$	49	
$23(p)$			$43(p)$	$23+43$
$29(p)$			$37(p)$	$29+37$
$7(p)$	$0(\bmod 7)$		$59(p)$	
$13(p)$			$53(p)$	$13+53$
$19(p)$			$47(p)$	$19+47$
25	$0(\bmod 5)$		$41(p)$	
$31(p)$		$1(\bmod 5)$ and $3(\bmod 7)$	35	

- $n=60 \quad(G C: 7,13,17,19,23,29)$
$n=2^{2} .3 .5$.
$n / 2=30$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 4(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		55	
$11(p)$		$4(\bmod 7)$	49	
$17(p)$			$43(p)$	$17+43$
$23(p)$			$37(p)$	$23+37$
$29(p)$			$31(p)$	$29+31$
$7(p)$	$0(\bmod 7)$		$53(p)$	
$13(p)$			$47(p)$	$13+47$
$19(p)$			$41(p)$	$19+41$
25	$0(\bmod 5)$	$4(\bmod 7)$	35	

- $n=54 \quad(D G: 7,11,13,17,23)$
$n=2.3^{3}$.
$n / 2=27$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 5(\bmod 7)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 7)$	49	
$11(p)$			$43(p)$	$11+43$
$17(p)$			$37(p)$	$17+37$
$23(p)$			$31(p)$	$23+31$
$7(p)$	$0(\bmod 7)$		$47(p)$	
$13(p)$			$41(p)$	$13+41$
$19(p)$		$4(\bmod 5)$ and $5(\bmod 7)$	35	
25	$0(\bmod 5)$		29	

- $n=48 \quad(G C: 5,7,11,17,19)$
$n=2^{4} .3$.
$n / 2=24$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 3(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		$43(p)$	
$11(p)$			$37(p)$	$11+37$
$17(p)$			$31(p)$	$17+31$
$23(p)$		$3(\bmod 5)$	25	
$7(p)$			$41(p)$	$7+41$
$13(p)$		$3(\bmod 5)$	35	
$19(p)$			$29(p)$	$19+29$

- $n=42 \quad(G C: 5,11,13,19)$
$n=2.3 .7$.
$n / 2=21$.
$5<\sqrt{n}<5$. The modulus to be considered is 5 .
$n \equiv 2(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		$37(p)$	
$11(p)$			$31(p)$	$11+31$
$17(p)$		$2(\bmod 5)$	25	
$7(p)$		$2(\bmod 5)$	35	
$13(p)$			$29(p)$	$13+29$
$19(p)$			$23(p)$	$19+23$

- $n=36 \quad(G C: 5,7,13,17)$
$n=2^{2} .3^{2}$.
$n / 2=18$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 1(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		$31(p)$	
$11(p)$		$1(\bmod 5)$	25	
$17(p)$			$19(p)$	$17+19$
$7(p)$			$29(p)$	$7+29$
$13(p)$			$23(p)$	$13+23$

- $n=30 \quad(G C: 7,11,13)$
$n=2.3 .5$.
$n / 2=15$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 0(\bmod 5)$.

$5(p)$	$0(\bmod 5)$	25		
$11(p)$			$19(p)$	$11+19$
$7(p)$		$23(p)$	$7+23$	
$13(p)$			$17(p)$	$13+17$

2 Even numbers of the form $n=6 m+4$ from 142 to 28

The double sieve of Eratosthenes application is presented in a table containing only $\left\lfloor\frac{n+6}{12}\right\rfloor$ numbers belonging to the arithmetic progression $6 k-1$.

- $n=142 \quad(G C: 3,5,11,29,41,53,59,71)$
$n=2.71$.
$n / 2=71$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 2(\bmod 5), n \equiv 2(\bmod 7), n \equiv 10(\bmod 11)$.

$5(p)$	$0(\bmod 5)$		$137(p)$	
$11(p)$	$0(\bmod 11)$		$131(p)$	
$17(p)$		$2(\bmod 5)$	125	
$23(p)$		$2(\bmod 7)$	119	
$29(p)$			$113(p)$	$29+113$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$107(p)$	
$41(p)$		$2(\bmod 5)$	$101(p)$	$41+101$
$47(p)$			95	
$53(p)$			$89(p)$	$53+89$
$59(p)$		$2(\bmod 7)$ et $10(\bmod 11)$	$83(p)$	$59+83$
65	$0(\bmod 5)$		$71(p)$	$71+71$
$71(p)$				

- $n=136 \quad(G C: 5,23,29,47,53)$
$n=2^{3} .17$.
$n / 2=68$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 1(\bmod 5), n \equiv 3(\bmod 7), n \equiv 4(\bmod 11)$.

$5(p)$	$0(\bmod 5)$		$131(p)$	
$11(p)$	$0(\bmod 11)$	$1(\bmod 5)$	125	
$17(p)$		$3(\bmod 7)$	119	
$23(p)$			$113(p)$	$23+113$
$29(p)$			$107(p)$	$29+107$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$101(p)$	
$41(p)$		$1(\bmod 5)$	95	
$47(p)$			$89(p)$	$47+89$
$53(p)$		$3(\bmod 7)$ et $4(\bmod 11)$	$83(p)$	$53+83$
$59(p)$			$71(p)$	
65	$0(\bmod 5)$			

- $n=130 \quad(G C: 3,17,23,29,41,47,59)$
$n=2.5 .13$.
$n / 2=65$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 0(\bmod 5), n \equiv 4(\bmod 7), n \equiv 9(\bmod 11)$.

$5(p)$	$0(\bmod 5)$		125	
$11(p)$	$0(\bmod 11)$	$4(\bmod 7)$	119	
$17(p)$			$113(p)$	$17+113$
$23(p)$			$107(p)$	$23+107$
$29(p)$			$101(p)$	$29+101$
35	$0(\bmod 5)$ and $0(\bmod 7)$		95	
$41(p)$			$89(p)$	$41+89$
$47(p)$		$4(\bmod 7)$ et $9(\bmod 11)$	77	77
$53(p)$			$71(p)$	$59+71$
$59(p)$			65	
65	$0(\bmod 5)$			

- $n=124 \quad(G C: 11,17,23,41,53)$
$n=2^{2}$. 31 .
$n / 2=62$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 4(\bmod 5), n \equiv 5(\bmod 7), n \equiv 3(\bmod 11)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 7)$	119	
$11(p)$	$0(\bmod 11)$		$113(p)$	
$17(p)$			$107(p)$	$17+107$
$23(p)$			$101(p)$	$23+101$
$29(p)$		$4(\bmod 5)$	95	
35	$0(\bmod 5)$ and $0(\bmod 7)$		$89(p)$	
$41(p)$			$83(p)$	$41+83$
$47(p)$		$5(\bmod 7)$ et $3(\bmod 11)$	77	
$53(p)$		$4(\bmod 5)$	$71(p)$	$53+71$
$59(p)$		65		

- $n=118 \quad(G C: 5,11,17,29,47,59)$
$n=2.59$.
$n / 2=59$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 6(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$113(p)$	
$11(p)$			$107(p)$	$11+107$
$17(p)$			$101(p)$	$17+101$
$23(p)$		$3(\bmod 5)$	95	
$29(p)$			$89(p)$	$29+89$
35	$0(\bmod 5)$ and $0(\bmod 7)$		$83(p)$	
$41(p)$		$6(\bmod 7)$	77	
$47(p)$			$71(p)$	$47+71$
$53(p)$		$3(\bmod 5)$	65	
$59(p)$			$59(p)$	$59+59$

- $n=112 \quad(D G: 3,5,11,23,29,41,53)$
$n=2^{4} .7$.
$n / 2=56$
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 0(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$107(p)$	
$11(p)$			$101(p)$	$11+101$
$17(p)$		$2(\bmod 5)$	95	
$23(p)$			$89(p)$	$23+89$
$29(p)$			$83(p)$	$29+83$
35	$0(\bmod 5)$ and $0(\bmod 7)$		77	
$41(p)$			$71(p)$	$41+71$
$47(p)$		$2(\bmod 5)$	65	
$53(p)$			$59(p)$	$53+59$

- $n=106 \quad(G C: 3,5,17,23,47,53)$
$n=2.53$.
$n / 2=53$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 1(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$101(p)$	
$11(p)$		$1(\bmod 5)$	95	
$17(p)$			$89(p)$	$17+89$
$23(p)$			$83(p)$	$23+83$
$29(p)$		$1(\bmod 7)$	77	
35	$0(\bmod 5)$ et $0(\bmod 7)$		$71(p)$	
$41(p)$		$1(\bmod 5)$	65	
$47(p)$			$59(p)$	$47+59$
$53(p)$			$53(p)$	$53+53$

- $n=100 \quad(G C: 3,11,17,29,41,47)$
$n=2^{2} .5^{2}$.
$n / 2=50$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 2(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		95	
$11(p)$			$89(p)$	$11+89$
$17(p)$			$83(p)$	$17+83$
$23(p)$		$2(\bmod 7)$	77	
$29(p)$			$71(p)$	$29+71$
35	$0(\bmod 5)$ et $0(\bmod 7)$		65	
$41(p)$			$59(p)$	$41+59$
$47(p)$			$53(p)$	$47+53$

- $n=94 \quad(G C: 5,11,23,41,47)$
$n=2.47$.
$n / 2=47$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 3(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$89(p)$	
$11(p)$			$83(p)$	$11+83$
$17(p)$		$3(\bmod 7)$	77	
$23(p)$			$71(p)$	$23+71$
$29(p)$		$4(\bmod 5)$	65	
35	$0(\bmod 5)$ et $0(\bmod 7)$		$59(p)$	
$41(p)$			$53(p)$	$41+53$
$47(p)$			$47(p)$	$47+47$

- $n=88 \quad(D G: 5,17,29,41)$
$n=2^{3}$. 11 .
$n / 2=44$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 4(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$83(p)$	
$11(p)$		$4(\bmod 7)$	77	
$17(p)$			$71(p)$	$17+71$
$23(p)$		$3(\bmod 5)$	65	
$29(p)$			$59(p)$	$29+59$
35	$0(\bmod 5)$ et $0(\bmod 7)$		$53(p)$	
$41(p)$			$47(p)$	$41+47$

- $n=82 \quad(G C: 3,11,23,29,41)$
$n=2.41$.
$n / 2=41$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 5(\bmod 7)$.

$5(p)$	$0(\bmod 5)$	$5(\bmod 7)$	77	
$11(p)$			$71(p)$	$11+71$
$17(p)$		$2(\bmod 5)$	65	
$23(p)$			$59(p)$	$23+59$
$29(p)$			$53(p)$	$29+53$
35	$0(\bmod 5)$ et $0(\bmod 7)$		$47(p)$	
$41(p)$			$41(p)$	$41+41$

- $n=76 \quad(G C: 3,5,17,23,29)$
$n=2^{2} .19$.
$n / 2=38$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 6(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$71(p)$	
$11(p)$		$1(\bmod 5)$	65	
$17(p)$			$59(p)$	$17+59$
$23(p)$			$53(p)$	$23+53$
$29(p)$			$47(p)$	$29+47$
35	$0(\bmod 5)$ et $0(\bmod 7)$		$41(p)$	

- $n=70 \quad(G C: 3,11,17,23,29)$
$n=2.5 .7$.
$n / 2=35$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 0(\bmod 7)$.

| $5(p)$ | $0(\bmod 5)$ | 65 | |
| :--- | :--- | :--- | :--- | :--- |
| $11(p)$ | | $59(p)$ | $11+59$ |
| $17(p)$ | | $53(p)$ | $17+53$ |
| $23(p)$ | | $47(p)$ | $23+47$ |
| $29(p)$ | | $41(p)$ | $29+41$ |
| 35 | $0(\bmod 5)$ et $0(\bmod 7)$ | 35 | |

- $n=64 \quad(G C: 3,5,11,17,23)$
$n=2^{6}$.
$n / 2=32$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 1(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$59(p)$	
$11(p)$			$53(p)$	$11+53$
$17(p)$			$47(p)$	$17+47$
$23(p)$			$41(p)$	$23+41$
$29(p)$		$4(\bmod 5)$ et $1(\bmod 7)$	35	

- $n=58 \quad(G C: 5,11,17,29)$
$n=2.29$.
$n / 2=29$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 2(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$53(p)$	
$11(p)$			$47(p)$	$11+47$
$17(p)$			$41(p)$	$17+41$
$23(p)$		$3(\bmod 5)$ et $2(\bmod 7)$	35	
$29(p)$			$29(p)$	$29+29$

- $n=52 \quad(G C: 5,11,23)$
$n=2^{2}$. 13 .
$n / 2=26$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 3(\bmod 7)$.

$5(p)$	$0(\bmod 5)$		$47(p)$	
$11(p)$			$41(p)$	$11+41$
$17(p)$		$2(\bmod 5)$ et $3(\bmod 7)$	35	
$23(p)$			$29(p)$	$23+29$

- $n=46 \quad(G C: 3,5,17,23)$
$n=2.23$.
$n / 2=23$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 1(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		$41(p)$	
$11(p)$		$1(\bmod 5)$	35	
$17(p)$			$29(p)$	$17+29$
$23(p)$			$23(p)$	$23+23$

- $n=40 \quad(G C: 3,11,17)$
$n=2^{3} .5$.
$n / 2=20$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 0(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		35	
$11(p)$			$29(p)$	$11+29$
$17(p)$			$23(p)$	$17+23$

- $n=34 \quad(G C: 3,5,11,17)$
$n=2.17$.
$n / 2=17$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 4(\bmod 5)$.

$5(p)$	$0(\bmod 5)$		$29(p)$	
$11(p)$			$23(p)$	$11+23$
$17(p)$			$17(p)$	$17+17$

- $n=28 \quad(G C: 5,11)$
$n=2^{2} .7$.
$n / 2=14$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 3(\bmod 5)$.

$5(p)$	$0(\bmod 5)$	23		
$11(p)$			$17(p)$	$11+17$

3 Even numbers of the form $n=6 m+2$ from 140 to 26

The double sieve of Eratosthenes application is presented in a table containing only $\left\lfloor\frac{n}{12}\right\rfloor$ numbers belonging to the arithmetic progression $6 k+1$.

- $n=140 \quad(G C: 3,13,31,37,43,61,67)$
$n=2^{2} .5 .7$.
$n / 2=70$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 0(\bmod 5), n \equiv 0(\bmod 7), n \equiv 8(\bmod 11)$.

$7(p)$	$0(\bmod 7)$		133	
$13(p)$			$127(p)$	$13+127$
$19(p)$		$8(\bmod 11)$	121	
25	$0(\bmod 5)$		115	
$31(p)$			$109(p)$	$31+109$
$37(p)$			$103(p)$	$37+103$
$43(p)$		$97(p)$	$43+97$	
49	$0(\bmod 7)$		91	
55	$0(\bmod 5)$ et $0(\bmod 11)$		85	
$61(p)$			$79(p)$	$61+79$
$67(p)$			$73(p)$	$67+73$

- $n=134 \quad(G C: 3,7,31,37,61,67)$
$n=2.67$.
$n / 2=67$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 4(\bmod 5), n \equiv 1(\bmod 7), n \equiv 2(\bmod 11)$.

$7(p)$	$0(\bmod 7)$		$127(p)$	
$13(p)$		$2(\bmod 11)$	121	
$19(p)$		$4(\bmod 5)$	115	
25	$0(\bmod 5)$		$109(p)$	
$31(p)$			$103(p)$	$31+103$
$37(p)$			$97(p)$	$37+97$
$43(p)$		$1(\bmod 7)$	91	
49	$0(\bmod 7)$	$4(\bmod 5)$	85	
55	$0(\bmod 5)$ et $0(\bmod 11)$		$79(p)$	
$61(p)$			$73(p)$	$61+73$
$67(p)$			$67(p)$	$67+67$

- $n=128 \quad(G C: 19,31,61)$
$n=2^{7}$.
$n / 2=64$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 3(\bmod 5), n \equiv 2(\bmod 7), n \equiv 7(\bmod 11)$.

$7(p)$	$0(\bmod 7)$	$7(\bmod 11)$	121	
$13(p)$		$3(\bmod 5)$	115	
$19(p)$			$109(p)$	$19+109$
25	$0(\bmod 5)$		$103(p)$	
$31(p)$			$97(p)$	$31+97$
$37(p)$		$2(\bmod 7)$	93	
$43(p)$		$3(\bmod 5)$	87	
49	$0(\bmod 7)$		81	
55	$0(\bmod 5)$ et $0(\bmod 11)$		75	
61			$69(p)$	$61+69$

- $n=122 \quad(G C: 13,19,43,61)$
$n=2.61$.
$n / 2=61$.
$11<\sqrt{n}<13$. The moduli to be considered are 5, 7 and 11 .
$n \equiv 2(\bmod 5), n \equiv 3(\bmod 7), n \equiv 1(\bmod 11)$.

$7(p)$	$0(\bmod 7)$	$2(\bmod 5)$	115	
$13(p)$			$109(p)$	$13+109$
$19(p)$			$103(p)$	$19+103$
25	$0(\bmod 5)$		$97(p)$	
$31(p)$		$3(\bmod 7)$	91	
$37(p)$		$2(\bmod 5)$	85	
$43(p)$			$79(p)$	$43+79$
49	$0(\bmod 7)$		$73(p)$	
55	$0(\bmod 5)$		$67(p)$	
$61(p)$			$61(p)$	$61+61$

- $n=116 \quad(G C: 3,7,13,19,37,43)$
$n=2^{2} .29$.
$n / 2=58$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 4(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$109(p)$	
$13(p)$			$103(p)$	$13+103$
$19(p)$			$97(p)$	$19+97$
25	$0(\bmod 5)$	$4(\bmod 7)$	91	
$31(p)$		$1(\bmod 5)$	85	
$37(p)$			$79(p)$	$37+79$
$43(p)$			$73(p)$	$43+73$
49	$0(\bmod 7)$		67	
55	$0(\bmod 5)$ et $0(\bmod 11)$		$61(p)$	

- $n=110 \quad(G C: 3,7,13,31,37,43)$
$n=2.5$.11.
$n / 2=55$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 5(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$103(p)$	
$13(p)$			$97(p)$	$13+97$
$19(p)$		$5(\bmod 7)$	91	
25	$0(\bmod 5)$		85	
$31(p)$			$79(p)$	$31+79$
$37(p)$			$73(p)$	$37+73$
$43(p)$			$67(p)$	$43+67$
49	$0(\bmod 7)$		$61(p)$	
55	$0(\bmod 5)$ et $0(\bmod 11)$		55	

- $n=104 \quad(G C: 3,7,31,37,43)$
$n=2^{3}$. 13 .
$n / 2=52$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 6(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$97(p)$	
$13(p)$		$6(\bmod 7)$	91	
$19(p)$		$4(\bmod 5)$	85	
25	$0(\bmod 5)$		$79(p)$	
$31(p)$			$73(p)$	$31+73$
$37(p)$			$67(p)$	$37+67$
$43(p)$			$61(p)$	$43+61$
49	$0(\bmod 7)$	$4(\bmod 5)$	55	

- $n=98 \quad(G C: 19,31,37)$
$n=2.7^{2}$.
$n / 2=49$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 0(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		91	
$13(p)$		$3(\bmod 5)$	85	
$19(p)$			$79(p)$	$19+79$
25	$0(\bmod 5)$		73	
$31(p)$			$67(p)$	$31+67$
$37(p)$			$61(p)$	$37+61$
$43(p)$		$3(\bmod 5)$	55	
49	$0(\bmod 7)$		49	

- $n=92 \quad(G C: 3,13,19,31)$
$n=2^{2} .23$.
$n / 2=46$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 1(\bmod 7)$.

$7(p)$	$0(\bmod 7)$	$2(\bmod 5)$	87	
$13(p)$			$81(p)$	$13+81$
$19(p)$			$75(p)$	$19+75$
25	$0(\bmod 5)$		69	
$31(p)$			$63(p)$	$31+63$
$37(p)$		$2(\bmod 5)$	$57(p)$	
$43(p)$		$1(\bmod 7)$	51	

- $n=86 \quad(G C: 3,7,13,19,43)$
$n=2.43$.
$n / 2=43$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 2(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$79(p)$	
$13(p)$			$73(p)$	$13+73$
$19(p)$			$67(p)$	$19+67$
25	$0(\bmod 5)$		$61(p)$	
$31(p)$		$1(\bmod 5)$	55	
$37(p)$		$2(\bmod 7)$	49	
$43(p)$			$43(p)$	$43+43$

- $n=80 \quad(G C: 7,13,19,37)$
$n=2^{4} .5$.
$n / 2=40$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 3(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$73(p)$	
$13(p)$			$67(p)$	$13+67$
$19(p)$			$61(p)$	$19+61$
25	$0(\bmod 5)$		55	
$31(p)$		$3(\bmod 7)$	49	
$37(p)$			$43(p)$	$37+43$

- $n=74 \quad(G C: 3,7,13,31,37)$
$n=2.37$.
$n / 2=37$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 4(\bmod 5), n \equiv 4(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$67(p)$	
$13(p)$			$61(p)$	$13+61$
$19(p)$		$4(\bmod 5)$	55	
25	$0(\bmod 5)$	$4(\bmod 7)$	49	
$31(p)$			$43(p)$	$31+43$
$37(p)$			$37(p)$	$37+37$

- $n=68 \quad(G C: 7,31)$
$n=2^{2} .17$.
$n / 2=34$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 3(\bmod 5), n \equiv 5(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$61(p)$	
$13(p)$		$3(\bmod 5)$	55	
$19(p)$		$5(\bmod 7)$	49	
25	$0(\bmod 5)$		$43(p)$	
$31(p)$			$37(p)$	$31+37$

- $n=62 \quad(G C: 3,19,31)$
$n=2.31$.
$n / 2=31$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 2(\bmod 5), n \equiv 6(\bmod 7)$.

$7(p)$	$0(\bmod 7)$	$2(\bmod 5)$	55	
$13(p)$		$6(\bmod 7)$	49	
$19(p)$			$43(p)$	$19+43$
25	$0(\bmod 5)$		$37(p)$	
$31(p)$			$31(p)$	$31+31$

- $n=56$
$(G C: 3,13,19)$
$n=2^{3} .7$.
$n / 2=28$
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 1(\bmod 5), n \equiv 0(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		49	
$13(p)$			$43(p)$	$13+43$
$19(p)$		$37(p)$	$19+37$	
25	$0(\bmod 5)$	31		

- $n=50 \quad(G C: 3,7,13,19)$
$n=2.5^{2}$.
$n / 2=25$.
$7<\sqrt{n}<11$. The moduli to be considered are 5 and 7 .
$n \equiv 0(\bmod 5), n \equiv 1(\bmod 7)$.

$7(p)$	$0(\bmod 7)$		$43(p)$	
$13(p)$			$37(p)$	$13+37$
$19(p)$		$31(p)$	$19+31$	
25	$0(\bmod 5)$	25		

- $n=44 \quad(G C: 3,7,13)$
$n=2^{2}$. 11 .
$n / 2=22$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 4(\bmod 5)$.

$7(p)$		$37(p)$	
$13(p)$		$31(p)$	$13+31$
$19(p)$	$4(\bmod 5)$	25	

- $n=38 \quad(G C: 7,19)$
$n=2.19$.
$n / 2=19$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 3(\bmod 5)$.

| $7(p)$ | | $31(p)$ | |
| :--- | :--- | :--- | :--- | :--- |
| $13(p)$ | $3(\bmod 5)$ | 25 | |
| 19 | | $19(p)$ | $19+19$ |

- $n=32 \quad(G C: 3,13)$
$n=2^{5}$.
$n / 2=16$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 2(\bmod 5)$.

$7(p)$	$2(\bmod 5)$	25	
13		$19(p)$	$13+19$

- $n=26 \quad(G C: 3,7,13)$
$n=2.13$.
$n / 2=13$.
$5<\sqrt{n}<7$. The modulus to be considered is 5 .
$n \equiv 1(\bmod 5)$.

$7(p)$		$19(p)$	
13		$13(p)$	$13+13$

