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Goldbach Conjecture (7th, june 1742) states that every even natural integer greater than 4 is the sum of
two odd prime numbers. If we note P∗ the set of odd prime numbers∗, we can write Goldbach Conjecture
as following :

∀ n ∈ 2N\{0, 2, 4}, ∃ p ∈ P∗, p ≤ n/2, ∃ q ∈ P∗, q ≥ n/2, n = p + q

We will call Goldbach decomposition of n such a sum p + q. p and q are called Goldbach decomponents of
n.
Goldbach Conjecture was verified by computer until 4.1018†.

In the following, n being a given naturel integer, we note :

- P∗1(n) = {x ∈ P∗/x ≤ n

2
},

- P∗2(n) = {x ∈ P∗/x ≤
√
n}.

We can reformulate Goldbach Conjecture by the following statement :

∀ n ∈ 2N\{0, 2, 4}, ∃ p ∈ P∗1(n), ∀ m ∈ P∗2(n), p 6≡ n (mod m).

Indeed,
∀ n ∈ 2N\{0, 2, 4}, ∃ p ∈ P∗1(n), ∀ m ∈ P∗2(n), p 6≡ n (mod m)

⇔ n− p 6≡ 0 (mod m)
⇔ n− p is prime.

1 Examples study

1.1 Example 1 : Why 19 is the smallest 98’s Goldbach decomponent ?

98 ≡ 3 (mod 5) (98− 3 = 95 and 5|95)
98 ≡ 5 (mod 3) (98− 5 = 93 and 3|93)
98 ≡ 7 (mod 7) (98− 7 = 91 and 7|91)
98 ≡ 11 (mod 3) (98− 11 = 87 and 3|87)
98 ≡ 13 (mod 5) (98− 13 = 85 and 5|85)
98 ≡ 17 (mod 3) (98− 17 = 81 and 3|81)

98 6≡ 19 (mod 3) (98− 19 = 79 and 3 6 | 79)
98 6≡ 19 (mod 5) (98− 19 = 79 and 5 6 | 79)
98 6≡ 19 (mod 7) (98− 19 = 79 and 7 6 | 79)

All of the odd prime natural integers between 3 and 17 are congruent to 98 modulo an element of P∗2(98)
so none of those numbers can be a 98’s Goldbach decomponent.

On the contrary, as requested : ∀ m ∈ P∗2(98), 19 6≡ 98 (mod m).
So 19 is a 98’s Goldbach decomponent. Effectively, 98 = 19 + 79 with 19 and 79 two odd prime numbers.

∗P∗ = {p1 = 3, p2 = 5, p3 = 7, p4 = 11, . . .}
†by Oliveira e Silva on 4.4.2012
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1.2 Example 2 : Why 3 is a 40’s Goldbach decomponent ?

In the following table are presented the equivalence classes of finite fields Z/3Z, Z/5Z, Z/7Z and Z/11Z.

Z/3Z 0 1 2

Z/5Z 0 1 2 3 4

Z/7Z 0 1 2 3 4 5 6

Z/11Z 0 1 2 3 4 5 6 7 8 9 10

In each finite field, we colored in light pink 3’s equivalence class, and we colored in light blue 40’s equiva-
lence class, the even natural integer to be Goldbach decomposed.

Since we have ∀ m ∈ P∗2(40), 3 6≡ 40 (mod m), 3 is a 40’s Goldbach decomponent. Indeed, 40 = 3 + 37
with 3 and 37 two odd primes.

1.3 Example 3 : let us look for Goldbach decomponents for even natural
integers that are ≡ 2 (mod 3) and ≡ 3 (mod 5) and ≡ 3 (mod 7).

Those numbers for which we are looking for Goldbach decomponents are natural integers of the form
210k+38 (consequently to Chinese Remainders Theorem that will be presented in the following).

We saw that odd prime natural integers p that are 6≡ 2 (mod 3) and 6≡ 3 (mod 5) and 6≡ 3 (mod 7) can be
Goldbach decomponents of those numbers.
If we omit the case of “little prime numbers” (i.e. the case where there is a congruence to 0 for one and
only one module),

− p must be ≡ 1 (mod 3),
− p must be ≡ 1 or 2 or 4 (mod 5),
− p must be ≡ 1 or 2 or 4 or 5 or 6 (mod 7).

Combining all possibilities, we obtain :

1 (mod 3) 1 (mod 5) 1 (mod 7) → 210k + 1
1 (mod 3) 1 (mod 5) 2 (mod 7) → 210k + 121
1 (mod 3) 1 (mod 5) 4 (mod 7) → 210k + 151
1 (mod 3) 1 (mod 5) 5 (mod 7) → 210k + 61
1 (mod 3) 1 (mod 5) 6 (mod 7) → 210k + 181
1 (mod 3) 2 (mod 5) 1 (mod 7) → 210k + 127
1 (mod 3) 2 (mod 5) 2 (mod 7) → 210k + 37
1 (mod 3) 2 (mod 5) 4 (mod 7) → 210k + 67
1 (mod 3) 2 (mod 5) 5 (mod 7) → 210k + 187
1 (mod 3) 2 (mod 5) 6 (mod 7) → 210k + 97
1 (mod 3) 4 (mod 5) 1 (mod 7) → 210k + 169
1 (mod 3) 4 (mod 5) 2 (mod 7) → 210k + 79
1 (mod 3) 4 (mod 5) 4 (mod 7) → 210k + 109
1 (mod 3) 4 (mod 5) 5 (mod 7) → 210k + 19
1 (mod 3) 4 (mod 5) 6 (mod 7) → 210k + 139
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Here are some examples of Goldbach decomponent belonging to arithmetic progressions founded for some
numbers of the arithmetic progression 210k+38.

248 : 7 19 37 67 97 109
458 : 19 37 61 79 109 127 151 181 229 (double of a prime)
668 : 7 37 61 67 97 127 181 211 229 271 331
878 : 19 67 109 127 139 151 271 277 307 331 337 379 421 439 (double of a prime)
1088 : 19 37 67 79 97 151 181 211 229;277 331 337 349 379 397 457

487 541
1298 : 7 19 61 67 97 127 181 211 229 277 307 331 379 421 439

487 541 547 571 607

2 Our objective : to reach a contradiction from the hypothesis
that an even natural integer doesn’t verify Goldbach Conjec-
ture

We are trying to demonstrate the impossibility that exists an even natural integer that doesn’t verify
Goldbach Conjecture. It corresponds to the fact that the hypothesis :

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, x doesn′t verify Goldbach Conjecture

permits to lead to a contradiction.

But :
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, x doesn’t verify Goldbach Conjecture

⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), x− p compound
⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), ∃ m ∈ P∗2(x), x− p ≡ 0 (mod m)
⇔ ∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ p ∈ P∗1(x), ∃ m ∈ P∗2(x), x ≡ p (mod m)

Expanding des quantificators, we obtain :

p1, . . . , pk ∈ P∗1(x), m1, . . . ,ml ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018, ∀ i ∈ [1, k], ∃ j ∈ [1, l], x; ≡ pi (mod mj).

Let us write all the congruence relations :

p1, . . . , pk ∈ P∗1(x), mj1 , . . . ,mjk ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S0


x ≡ p1 (mod mj1)
x ≡ p2 (mod mj2)
. . .
x ≡ pk (mod mjk)

It is important to notice that moduli are odd prime natural integers that are not necessarily differents
(some of them can be equal).

3 Chinese Remainders Theorem

3.1 Recalls

We call arithmetic progression a set of natural integers of the form ax+b with a ∈ N∗, b ∈ N and x ∈ N.
A congruences system that doesn’t contain contradictions can be solved using Chinese Remainders The-
orem.
The Chinese Remainders Theorem establishes an isomorphism between Z/m1Z × . . . × Z/mkZ and

Z/
∏k

i=1 miZ if and only if the mi are two by two coprime (∀ mi ∈ N∗, ∀ mj ∈ N∗, (mi,mj) = 1).
The Chinese Remainders Theorem establishes a bijection between the set of congruences systems and the

3



set of arithmetic progressions.
We are looking for solutions for the following congruences system S :

x ≡ r1 (mod m1)
x ≡ r2 (mod m2)
. . .
x ≡ rk (mod mk)

We set M =
∏k

i=1 mi.

Let us calculate : • M1 = M/m1,M2 = M/m2, . . . ,Mk = M/mk.

• d1, d2, . . . , dk such that


d1.M1 ≡ 1 (mod m1)
d2.M2 ≡ 1 (mod m2)
. . .
dk.Mk ≡ 1 (mod mk)

The solution of S is x ≡ Σ
k

i=1
ri.di.Mi (mod M) .

3.2 Example 1

Let us try to solve the following congruences system : x ≡ 1 (mod 3)
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

We set M = 3.5.7 = 105.
M1 = M/3 = 105/3 = 35, 35.y1 ≡ 1 (mod 3), y1 = 2.
M2 = M/5 = 105/5 = 21, 21.y2 ≡ 1 (mod 5), y2 = 1.
M3 = M/7 = 105/7 = 15, 15.y3 ≡ 1 (mod 7), y3 = 1.

x ≡ r1.M1.y1 + r2.M2.y2 + r3.M3.y3
≡ 1.35.2 + 3.21.1 + 5.15.1 = 70 + 63 + 75 = 208 = 103 (mod 105)
that are the natural integers of the sequence : 103, 208, 313, . . . ,
i.e. those of the arithmetic progression : 105k+103.

3.3 Example 2

If we had to solve nearly the same congruences system, but with one congruence less :{
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

We set M ′ = 5.7 = 35.
M ′1 = M ′/5 = 7, 7.y′1 ≡ 1 (mod 5), y′1 = 3.
M ′2 = M ′/7 = 5, 5.y′2 ≡ 1 (mod 7), y′2 = 3.

x ≡ r1.M1.y1 + r2.M2.y2
≡ 3.3.7 + 5.3.5 = 63 + 75 = 138 = 33 (mod 35)
that are the natural integers of the sequence : 33, 68, 103, 138, 173, 208, 243, . . . ,
i.e. those of the arithmetic progression : 35k+33

3.4 Congruence relation powerfulness

The congruence relation (noted ≡), that was invented by Gauss, is an equivalence relation.
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a ≡ b
c ≡ d

a + c ≡ b + d
ac ≡ bd

Let us compare two congruences systems resolutions :

A :

{
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

B :

{
x ≡ 13 (mod 5)
x ≡ 5 (mod 7)

A : x ≡ 3.3.7 + 5.3.5 = 63 + 75 = 138 = 33 (mod 35)
B : x ≡ 13.3.7 + 5.3.5 = 273 + 75 = 348 = 33 (mod 35)

Because 3 and 13 are congruent (mod 5), we found the same arithmetic progression by congruence
(modulo 35) ; it is the solution of both two systems.

3.5 What makes the bijection provided by Chinese Remainders Theorem ?

The Chinese Remainders Theorem associates to each non-contradictory congruences system containing
prime moduli an arithmetic progression.

Let us call E the congruences modulo prime natural integers systems set. Let us call E′ the arithmetic
progressions set.

E → E′

sc1 7→ pa1
sc2 7→ pa2
sc1 ∧ sc2 7→ pa1 ∩ pa2.

Moreover,
(sc1 ⇒ sc2) ⇔ (pa1 ⊂ pa2).

An arithmetic progression being a part of the natural integers set admits a smallest element. In the
following, we will choose to represent an arithmetic progression by its smallest natural integer.

If E and E′ are two arithmetic progressions, E ⊂ E′ ⇒ n′ ≤ n

We call “lattice” a set E provided with a partial order relation and such that :

∀ a ∈ E, ∀ b ∈ E, {a, b} admits a least upper bound and a greatest lower bound.

The congruences modulo prime natural integers systems set is a lattice provided with a partial order
(based on the logical implication relation (⇒)).

The arithmetic progressions set is a lattice provided with a partial order (based on the set inclusion
relation (⊂)).

3.6 Let us observe more precisely the bijection intervening in Chinese Re-
mainders Theorem

Let us see the result of applying the bijection (that we will call trc) of Chinese Remainders Theorem to
the cartesian product A = Z/3Z×Z/5Z. The elements that are paired with A’s elements are equivalence
classes of Z/15Z.
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(0, 0) 7→ 0
(0, 1) 7→ 6
(0, 2) 7→ 12
(0, 3) 7→ 3
(0, 4) 7→ 9
(1, 0) 7→ 10
(1, 1) 7→ 1
(1, 2) 7→ 7
(1, 3) 7→ 13
(1, 4) 7→ 4
(2, 0) 7→ 5
(2, 1) 7→ 11
(2, 2) 7→ 2
(2, 3) 7→ 8
(2, 4) 7→ 14

In this table, the line (1, 3) 7→ 13 must be read “the set of natural integers that are congruent to 1 (mod 3)
and to 3 (mod 5) is equal to the set of natural integers that are congruent to 13 (mod 15)”. It can be
noticed that the same line could be read “13 is congruent to 1 (mod 3) and to 3 (mod 5)”‡.

Let us study now the bijection that pairs Z/3Z× Z/5Z× Z/7Z with Z/105Z

(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 15
(0, 0, 2) 7→ 30
(0, 0, 3) 7→ 45
(0, 0, 4) 7→ 60
(0, 0, 5) 7→ 75
(0, 0, 6) 7→ 90

(0, 1, 0) 7→ 21
(0, 1, 1) 7→ 36
(0, 1, 2) 7→ 51
(0, 1, 3) 7→ 66
(0, 1, 4) 7→ 81
(0, 1, 5) 7→ 96
(0, 1, 6) 7→ 6

(0, 2, 0) 7→ 42
(0, 2, 1) 7→ 57
(0, 2, 2) 7→ 72
(0, 2, 3) 7→ 87
(0, 2, 4) 7→ 102
(0, 2, 5) 7→ 12
(0, 2, 6) 7→ 27

(0, 3, 0) 7→ 63
(0, 3, 1) 7→ 78
(0, 3, 2) 7→ 93
(0, 3, 3) 7→ 3
(0, 3, 4) 7→ 18
(0, 3, 5) 7→ 33
(0, 3, 6) 7→ 48

(0, 4, 0) 7→ 84
(0, 4, 1) 7→ 99
(0, 4, 2) 7→ 9
(0, 4, 3) 7→ 24
(0, 4, 4) 7→ 39
(0, 4, 5) 7→ 54
(0, 4, 6) 7→ 69

(1, 0, 0) 7→ 70
(1, 0, 1) 7→ 85
(1, 0, 2) 7→ 100
(1, 0, 3) 7→ 10
(1, 0, 4) 7→ 25
(1, 0, 5) 7→ 40
(1, 0, 6) 7→ 55

(1, 1, 0) 7→ 91
(1, 1, 1) 7→ 1
(1, 1, 2) 7→ 16
(1, 1, 3) 7→ 31
(1, 1, 4) 7→ 46
(1, 1, 5) 7→ 61
(1, 1, 6) 7→ 76

(1, 2, 0) 7→ 7
(1, 2, 1) 7→ 22
(1, 2, 2) 7→ 37
(1, 2, 3) 7→ 52
(1, 2, 4) 7→ 67
(1, 2, 5) 7→ 82
(1, 2, 6) 7→ 97

(1, 3, 0) 7→ 28
(1, 3, 1) 7→ 43
(1, 3, 2) 7→ 58
(1, 3, 3) 7→ 73
(1, 3, 4) 7→ 88
(1, 3, 5) 7→ 103
(1, 3, 6) 7→ 13

(1, 4, 0) 7→ 49
(1, 4, 1) 7→ 64
(1, 4, 2) 7→ 79
(1, 4, 3) 7→ 94
(1, 4, 4) 7→ 4
(1, 4, 5) 7→ 19
(1, 4, 6) 7→ 34

(2, 0, 0) 7→ 35
(2, 0, 1) 7→ 50
(2, 0, 2) 7→ 65
(2, 0, 3) 7→ 80
(2, 0, 4) 7→ 95
(2, 0, 5) 7→ 5
(2, 0, 6) 7→ 20

(2, 1, 0) 7→ 56
(2, 1, 1) 7→ 71
(2, 1, 2) 7→ 86
(2, 1, 3) 7→ 101
(2, 1, 4) 7→ 11
(2, 1, 5) 7→ 26
(2, 1, 6) 7→ 41

(2, 2, 0) 7→ 77
(2, 2, 1) 7→ 92
(2, 2, 2) 7→ 2
(2, 2, 3) 7→ 17
(2, 2, 4) 7→ 32
(2, 2, 5) 7→ 47
(2, 2, 6) 7→ 62

(2, 3, 0) 7→ 98
(2, 3, 1) 7→ 8
(2, 3, 2) 7→ 23
(2, 3, 3) 7→ 38
(2, 3, 4) 7→ 53
(2, 3, 5) 7→ 68
(2, 3, 6) 7→ 83

(2, 4, 0) 7→ 14
(2, 4, 1) 7→ 29
(2, 4, 2) 7→ 44
(2, 4, 3) 7→ 59
(2, 4, 4) 7→ 74
(2, 4, 5) 7→ 89
(2, 4, 6) 7→ 104

In each cell, we colored the smallest number of the cell, on which we can imagine the other numbers of
the cell “project” themselves when we suppress congruences in the system that correspond to them. We
remark that applying Succ Peano Arithmetic function (adding recursively (1,1) from (0,0)), we pass across
all the table cells one by one following descending diagonals (and going to the bottom of a column or to
the extrem left of a line when the cell we reached is out of the table).

We easily understand that our observed results on the cartesian product of 3 finite fields are generalisable
to cartesian products of as many finite fields as we want..

‡We can consider that this property corresponds to a kind of “fractality” of natural integers set, that can be called
“auto-similarity”, that is such that a same property is to be found at the elements level and at the element sets level for N.
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3.7 The bijection restricted trc (or the smallest natural integer reached by trc)

We define bijection restricted trc as the bijection that to a congruences system associates the smallest
natural integer of the arithmetic progression that is associated to it by the Chinese Remainders.

There is an important consequence to the fact that trc (and restricted trc) are bijections : bijection
restricted trc associating to each congruences system modulo prime natural integers that are all differents,
a natural integer belonging to the finite part of N containing the natural integers from 0 to

∏k
i=1 mi, if

sc1 ⇒ sc2 and sc1 6= sc2 then the solution of congruences system sc1 (the element paired with sc1 by the
bijection restricted trc) is strictly greater than the solution paired with the congruences system sc2.

3.8 An application example of bijection restricted trc

The natural integer 94 is between 3.5 = 15 and 3.5.7 = 105. Let us study the projections of 3-uple (1, 4, 3)
belonging to the cartesian product Z/3Z× Z/5Z× Z/7Z on each one of its coordinates.

Z/3Z× Z/5Z× Z/7Z → N
(1, 4, 3) 7→ 94

Z/3Z× Z/5Z → N
(1, 4) 7→ 4

Z/3Z× Z/7Z → N
(1, 3) 7→ 10

Z/5Z× Z/7Z → N
(4, 3) 7→ 24

94 has three numbers paired with him by restricted trc, one for each of its coordinates. 94 is projecting
in natural integers strictly lesser than him because 3.5 < 3.7 < 5.7 < 94 < 3.5.7.

4 Fermat’s Infinite Descent

4.1 Recalls

Using Fermat’s Infinite Descent method to prove Goldbach Conjecture consists in demonstrating that
if there was a natural integer that would not verify Goldbach Conjecture, there would be another one,
smaller than the first one, that would not verify Goldbach Conjecture neither, and like this, step by step,
until reaching so little natural integers, than for them, we know they verify Goldbach Conjecture.

Fermat’s Infinite Descent Method results from the fact that there is no infinite and strictly decreasing
sequence of natural integers. The reasoning on which Fermat’s Infinite Descente is based is the well-known
“reductio ad absurdum” :

− let us suppose that x is the smallest natural integer such that P(x) ;
− we show that then P(x’) with x’ <x ;
− we reached a contradiction.

If P (n) for a natural integer n given, there exists a non-empty part of N that contains an element that
verifies the property P . This part of N admits a smallest element. In our case, the property P consists in
“not verifying Goldbach Conjecture”.

We recall that we try to reach a contradiction from the hypothesis :

p1, . . . , pk ∈ P∗1(x), mj1 , . . . ,mjk ∈ P∗2(x).
∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S0


x ≡ p1 (mod mj1)
x ≡ p2 (mod mj2)
. . .
x ≡ pk (mod mjk)
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It is important to remember that some moduli can be equal.

4.2 First step

Let us transform our congruences system so that moduli are put in an increasing order and in the aim to
eliminate redundancies.

p′1, . . . , p
′
k ∈ P∗1(x), nj1 , . . . , njk ∈ P∗2(x).

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S


x ≡ p′1 (mod nj1)
x ≡ p′2 (mod nj2)
. . .
x ≡ p′k (mod njk)

S is paired with d by restricted trc bijection.

4.3 From where can the contradiction come from ?

It can come from the Fermat’s Infinite Descent principle.

We know that restricted trc bijection provides as solution for S the natural integer d that is the smallest
integer of the arithmetic progression associated to S by the Chinese Remainders Theorem.

S congruences system is such that d doesn’t verify Goldbach Conjecture.

We are looking for a congruences system S ′, that is implied by S and 6= from S, to which is associated
by restricted trc bijection a natural integer d′ < d, with d′ doesn’t verify Goldbach Conjecture neither.

Let us consider a congruences system S ′ constituted of a certain number of congruences from S mod-
ulo some moduli mi that are prime odd natural integers all differents, i between 1 and k, such that
d >

∏k
i=1 mi.

To be able to descent one step of the Fermat’s Descent steps, it is necessary that d′ < d. But we saw that
d′ < d comes from the fact that restricted trc is a bijection.

How can we be sure that d′ doesn’t verify Goldbach Conjecture neither ?

For this, it is necessary that congruences kept from the initial system S are so that d′ is congruent to all
prime natural integers in P∗1(d′) modulo a prime natural integer in P∗2(d′).

Told in another way, we must be sure that removing some congruences to make the congruences system’s
solution strictly decrease, we are not going to “lose” congruences that ensured Goldbach Conjecture non-
verification by d′.

4.4 Second step

We keep from the resulting congruences system a maximum of congruences to make a congruences system
S ′ such that d, the initial congruences system S’s solution, is strictly greater than the moduli product
kept in the new system S ′ and such that every modulo intervening in a kept congruence of the system is

lesser than
√
d′.

p′1, . . . , p
′
k′ ∈ P∗1(x), nj1 , . . . , njk′ ∈ P∗2(d′).

∃ x ∈ 2N\{0, 2, 4}, x ≥ 4.1018,

S ′


x ≡ p′1 (mod nj1)
x ≡ p′2 (mod nj2)
. . .
x ≡ p′k′ (mod njk′ )

8



We have d >
∏k′

u=1 nju . The p′x are odd prime natural integers all differents and the ny are odd prime
natural integers all differents and ordered in an increasing order.

S ′ is paired with d′ by restricted trc bijection.

4.5 Why d′ doesn’t verify Goldbach Conjecture neither ?

We have d′ <
∏k′

u=1 nju < d.

So
d′

2
<

d

2
⇔ P∗1(d′) ⊂ P∗1(d).

But ∀ mi ∈ P∗2(d), d′ ≡ d (mod mi).

So ∀pi ∈ P∗1(d), ∃mi ∈ P∗2(d), d ≡ pi (mod mi).

⇔ ∀pi ∈ P∗1(d), ∃mi ∈ P∗2(d), d′ ≡ pi (mod mi)

⇒ ∀pi ∈ P∗1(d′), ∃mi ∈ P∗2(d′), d′ ≡ pi (mod mi)

The implication is true because all the kept moduli are elements of P∗2(d′).

This last line asserts that d′ doesn’t verify Goldbach Conjecture neither.

5 Conclusion

If a natural integer d doesn’t verify Goldbach Conjecture, we are ensured that we always can obtain a
natural integer d′ < d not verifying Goldbach Conjecture neither, we reached a contradiction from the
hypothesis that d was the smallest natural integer not verifying Goldbach Conjecture.

So doing, we established that we always lead to a contradiction from the hypothesis that a natural integer
doesn’t verify Goldbach Conjecture.

For our aim, we used what we could call a “Residue Numeration System in Finite Parts of N”.

Congruence relation yields the set of natural integers N a fractal set.
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