Goldbach Conjecture ($7^{\text {th }}$ june 1742)

- We note \mathbb{P}^{*} the odd prime numbers set.

$$
\mathbb{P}^{*}=\left\{p_{1}=3, p_{2}=5, p_{3}=7, p_{4}=11, \ldots\right\}
$$

- $\forall n \in 2 \mathbb{N} \backslash\{0,2,4\}$,

$$
\begin{gathered}
\exists p \in \mathbb{P}^{*}, p \leq n / 2, \\
\exists q \in \mathbb{P}^{*}, q \geq n / 2, \\
n=p+q
\end{gathered}
$$

- We call n's Goldbach decomposition such a sum $p+q$.
- p and q are said n's Goldbach decomponents.
- verified by computer until 4.10^{18}
(Oliveira e Silva, 4.4.2012)

Notations

- In the following, C.G. signifies Goldbach Conjecture,
- s.c. signifies congruences system,
- p.a. signifies arithmetic progression,
- T.r.c. signifies Chinese Remainders Theorem.
- For a given n, we note :

$$
\begin{aligned}
& \mathbb{P}_{1}^{*}(n)=\left\{x \in \mathbb{P}^{*} / x \leq \frac{n}{2}\right\} \\
& \mathbb{P}_{2}^{*}(n)=\left\{x \in \mathbb{P}^{*} / x \leq \sqrt{n}\right\}
\end{aligned}
$$

Reformulation

- Goldbach Conjecture is equivalent to the following statement :

$$
\begin{aligned}
\forall n \in & 2 \mathbb{N} \backslash\{0,2,4\}, \exists p \in \mathbb{P}_{1}^{*}(n), \forall m \in \mathbb{P}_{2}^{*}(n), \\
& p \not \equiv n(\bmod m)
\end{aligned}
$$

- Indeed,

$$
\begin{aligned}
\forall n \in & 2 \mathbb{N} \backslash\{0,2,4\}, \exists p \in \mathbb{P}_{1}^{*}(n), \forall m \in \mathbb{P}_{2}^{*}(n), \\
& p \not \equiv n(\bmod m) \Leftrightarrow n-p \not \equiv 0(\bmod m) \Leftrightarrow n-p \text { is prime }
\end{aligned}
$$

Examples study: Example 1

- Why 19 is the smallest 98 's Goldbach decomponent ?

$$
\begin{aligned}
& 98 \equiv 3(\bmod 5) \quad \text { (98-3 }=95 \text { and } 5 \mid 95) \\
& 98 \equiv 5(\bmod 3) \quad(98-5=93 \text { and } 3 \mid 93) \\
& 98 \equiv 7(\bmod 7) \quad \text { (98-7-91 and } 7 \mid 91) \\
& 98 \equiv 11(\bmod 3) \quad(98-11=87 \text { and } 3 \mid 87) \\
& 98 \equiv 13(\bmod 5) \quad(98-13=85 \text { and } 5 \mid 85) \\
& 98 \equiv 17(\bmod 3) \quad(98-17=81 \text { and } 3 \mid 81) \\
& 98 \not \equiv 19(\bmod 3) \quad(98-19=79 \text { and } 3 \times 79) \\
& 98 \not \equiv 19(\bmod 5) \quad(98-19=79 \text { and } 5 \times 79) \\
& 98 \not \equiv 19(\bmod 7) \quad(98-19=79 \text { and } 7 \times 79)
\end{aligned}
$$

- Conclusion : $\forall m \in \mathbb{P}_{2}^{*}(98), 19 \not \equiv 98(\bmod m)$ 19 is a 98 's Goldbach decomponent.
Indeed, $98=19+79$ with 19 and 79 both primes.

Examples study: Example 2

- Why 3 is a 40 's Goldbach decomponent?

$$
\begin{array}{llllllllllll}
\mathbb{Z} / 3 \mathbb{Z} & \overline{0} & \overline{1} & \overline{2} & & & & & & & \\
\mathbb{Z} / 5 \mathbb{Z} & \overline{0} & \overline{1} & \overline{2} & \overline{3} & \overline{4} & & & & & & \\
\mathbb{Z} / 7 \mathbb{Z} & \overline{0} & \overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{6} & & & & \\
\mathbb{Z} / 11 \mathbb{Z} & \overline{0} & \overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{6} & \overline{7} & \overline{8} & \overline{9} & \overline{10}
\end{array}
$$

3's equivalence class in each finite field,
40's equivalence class in each finite field.

- Conclusion : $\forall m \in \mathbb{P}_{2}^{*}(40), 3 \not \equiv 40(\bmod m)$

$$
3 \text { is a 40's Goldbach decomponent. }
$$

Indeed, $40=3+37$ with 3 and 37 primes.

Examples study: Example 3

- We are looking for Goldbach decomponents of natural integers that are

$$
\equiv 2(\bmod 3) \text { and } \equiv 3(\bmod 5) \text { and } \equiv 3(\bmod 7)
$$

- Those numbers we are looking Goldbach decomponents for, are natural integers of the form $210 k+38$ (result provided by Chinese Remainders Theorem as we will see it sooner).
- We saw that odd prime natural integers p that are

$$
\not \equiv 2(\bmod 3) \text { and } \not \equiv 3(\bmod 5) \text { and } \not \equiv 3(\bmod 7)
$$

can be Goldbach decomponents of those numbers.

- If we omit the case of "little prime numbers"
(i.e. congruences cases to 0 modulo one odd prime and only one),
- p must be $\equiv 1(\bmod 3)$.
- p must be $\equiv 1$ or 2 or $4(\bmod 5)$.
- p must be $\equiv 1$ or 2 or 4 or 5 or $6(\bmod 7)$.

Examples study: Example 3

- We are looking for Goldbach decomponents of some even natural integers

$$
\equiv 2(\bmod 3) \text { and } \equiv 3(\bmod 5) \text { and } \equiv 3(\bmod 7)
$$

(\Leftrightarrow of the form $210 k+38$)

- Combining all differents possibilities, we obtain :

Examples: Example 3

- We are looking for Goldbach decomponents of some even natural integers

$$
\equiv 2(\bmod 3) \text { and } \equiv 3(\bmod 5) \text { and } \equiv 3(\bmod 7)
$$

(\Leftrightarrow of the form $210 k+38$)

- Combining all differents possibilities, we obtain:

$1(\bmod 3) 1$				
$1(\bmod 3) 1$	$(\bmod 5) 1$	$(\bmod 7)$	\rightarrow	$210 \mathrm{k}+1$
$1(\bmod 3) 1$	$(\bmod 5) 4(\bmod 7)$	\rightarrow	$210 \mathrm{k}+151$	
$1(\bmod 3) 1(\bmod 5) 5(\bmod 7)$	\rightarrow	$210 \mathrm{k}+61$		
$1(\bmod 3) 1(\bmod 5) 6(\bmod 7)$	\rightarrow	$210 \mathrm{k}+181$		
$1(\bmod 3) 2(\bmod 5) 1(\bmod 7)$	\rightarrow	$210 \mathrm{k}+127$		
$1(\bmod 3) 2(\bmod 5) 2(\bmod 7)$	\rightarrow	$210 \mathrm{k}+37$		
$1(\bmod 3) 2(\bmod 5) 4(\bmod 7)$	\rightarrow	$210 \mathrm{k}+67$		
$1(\bmod 3) 2(\bmod 5) 5(\bmod 7)$	\rightarrow	$210 \mathrm{k}+187$		
$1(\bmod 3) 2(\bmod 5) 6(\bmod 7)$	\rightarrow	$210 \mathrm{k}+97$		
$1(\bmod 3) 4(\bmod 5) 1(\bmod 7)$	\rightarrow	$210 \mathrm{k}+169$		
$1(\bmod 3) 4(\bmod 5) 2(\bmod 7)$	\rightarrow	$210 \mathrm{k}+79$		
$1(\bmod 3) 4(\bmod 5) 4(\bmod 7)$	\rightarrow	$210 \mathrm{k}+109$		
$1(\bmod 3) 4(\bmod 5) 5(\bmod 7)$	\rightarrow	$210 \mathrm{k}+19$		
$1(\bmod 3) 4(\bmod 5) 6(\bmod 7)$	\rightarrow	$210 \mathrm{k}+139$		

Examples study: Example 3

- Here are some examples of Goldbach decomponents belonging to arithmetic progressions found for some even numbers of the arithmetic progression $210 k+38$
- 248:719376797109

458: 19376179109127151181229 (2p)
668 : 737616797127181211229271331 878: 1967109127139151271277307331337379421439 (2p) 1088: 1937677997151181211229277331337349379397457 487541
1298: 719616797127181211229277307331379421439 487541547571607

- Conclusion: It works, of course, it is studied for.

We try to demonstrate the impossibility that exists an even natural integer that doesn't verify C.G.

- $\left(\exists x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, x\right.$ doesn't verify C.G. $) \Rightarrow$ false
- but

$$
\begin{aligned}
\exists x \in & 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, x \text { doesn't verify C.G. } \\
\Leftrightarrow \quad \exists x \in & 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, \forall p \in \mathbb{P}_{1}^{*}(x), \\
& x-p \text { is compound } \\
\Leftrightarrow \quad \exists x \in & 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, \forall p \in \mathbb{P}_{1}^{*}(x), \exists m \in \mathbb{P}_{2}^{*}(x), \\
& x-p \equiv 0(\bmod m) \\
\Leftrightarrow \quad \exists x \in & 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, \forall p \in \mathbb{P}_{1}^{*}(x), \exists m \in \mathbb{P}_{2}^{*}(x), \\
& x \equiv p(\bmod m)
\end{aligned}
$$

We try to demonstrate the impossibility that exists an even natural integer that doesn't verify C.G.

$$
\begin{aligned}
& -\exists x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}, \forall p \in \mathbb{P}_{1}^{*}(x), \exists m \in \mathbb{P}_{2}^{*}(x), \\
& x \equiv p(\bmod m)
\end{aligned}
$$

- Quantificators expansion
- $p_{1}, \ldots, p_{k} \in \mathbb{P}_{1}^{*}(x), m_{1}, \ldots, m_{l} \in \mathbb{P}_{2}^{*}(x)$. $\exists x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}$,

$$
\begin{gathered}
\forall i \in[1, k], \exists j \in[1, l] \\
x \equiv p_{i}\left(\bmod m_{j}\right)
\end{gathered}
$$

We try to demonstrate the impossibility that exists an even natural integer that doesn't verify C.G.

- Let us write all of the congruences :
- $p_{1}, \ldots, p_{k} \in \mathbb{P}_{1}^{*}(x), m_{j_{1}}, \ldots, m_{j_{k}} \in \mathbb{P}_{2}^{*}(x)$. $\exists x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}$,

$$
\mathcal{S}_{0}\left\{\begin{array}{l}
x \equiv p_{1}\left(\bmod m_{j_{1}}\right) \\
x \equiv p_{2}\left(\bmod m_{j_{2}}\right) \\
\cdots \\
x \equiv p_{k}\left(\bmod m_{j_{k}}\right)
\end{array}\right.
$$

- Note : m_{i} moduli are odd prime natural integers that are not mandatory all differents.

Interlude: Chinese Remainders Theorem

- We call arithmetic progression a set containing natural integers of the form $a x+b$ with $a \in \mathbb{N}^{*}, b \in \mathbb{N}$ and $x \in \mathbb{N}$.
- A congruences system not containing contradiction can be solved by the Chinese Remainders Theorem.
- The Chinese Remainders Theorem establishes an isomorphism between $\mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{k} \mathbb{Z}$ and $\mathbb{Z} / \prod_{i=1}^{k} m_{i} \mathbb{Z}$ if and only if the modules m_{i} are two by two coprime.
$\left(\forall m_{i} \in \mathbb{N}^{*}, \forall m_{j} \in \mathbb{N}^{*},\left(m_{i}, m_{j}\right)=1\right)$
- The Chinese Remainders Theorem establishes a bijection between the set of non-contradictory congruences systems and the set of arithmetic progressions.

Interlude: Recall of Chinese Remainders Theorem

- We are looking for the set of solutions of the following congruences system S:

$$
\left\{\begin{array}{l}
x \equiv r_{1}\left(\bmod m_{1}\right) \\
x \equiv r_{2}\left(\bmod m_{2}\right) \\
\ldots \equiv r_{k}\left(\bmod m_{k}\right)
\end{array}\right.
$$

- We set $M=\prod_{i=1}^{k} m_{i}$.
- Let us calculate $M_{1}=M / m_{1}, M_{2}=M / m_{2}, \ldots, M_{k}=M / m_{k}$.
- Let us calculate $d_{1}, d_{2}, \ldots, d_{k}$ such that

$$
\left\{\begin{array}{l}
d_{1} \cdot M_{1} \equiv 1\left(\bmod m_{1}\right) \\
d_{2} \cdot M_{2} \equiv 1\left(\bmod m_{2}\right) \\
\dddot{d}_{k} \cdot M_{k} \equiv 1\left(\bmod m_{k}\right)
\end{array}\right.
$$

- S^{\prime} s solution is $x \equiv \sum_{i=1}^{k} r_{i} \cdot d_{i} \cdot M_{i}(\bmod M)$

Interlude: Chinese Remainders Theorem

- Let us try to solve :

$$
\left\{\begin{array}{l}
x \equiv 1(\bmod 3) \\
x \equiv 3(\bmod 5) \\
x \equiv 5(\bmod 7)
\end{array}\right.
$$

- We set $M=3.5 \cdot 7=105$.

$$
\begin{array}{lll}
M_{1}=M / 3=105 / 3=35 & 35 \cdot y_{1} \equiv 1(\bmod 3) & y_{1}=2 \\
M_{2}=M / 5=105 / 5=21 & 21 \cdot y_{2} \equiv 1(\bmod 5) & y_{2}=1 \\
M_{3}=M / 7=105 / 7=15 & 15 \cdot y_{3} \equiv 1(\bmod 7) & y_{3}=1
\end{array}
$$

$x \equiv r_{1} \cdot M_{1} \cdot y_{1}+r_{2} \cdot M_{2} \cdot y_{2}+r_{3} \cdot M_{3} \cdot y_{3}$

$$
\equiv 1.35 .2+3.21 .1+5.15 .1=70+63+75=208=103(\bmod 105)
$$

that are the natural integers of the sequence : 103, 208, $313, \ldots$
i.e. from the arithmetic progression : $105 k+103$

- Ambiguity, Galois theory, invariant function by a roots permutation

Interlude: Chinese Remainders Theorem

- If we had to solve nearly the same congruences system, but with one congruence less :

$$
\left\{\begin{array}{l}
x \equiv 3(\bmod 5) \\
x \equiv 5(\bmod 7)
\end{array}\right.
$$

- We set $M^{\prime}=5.7=35$.

$$
\begin{array}{rlr}
& M_{1}^{\prime}=M^{\prime} / 5=7 & 7 \cdot y_{1}^{\prime} \equiv 1(\bmod 5) \\
& M_{2}^{\prime}=M^{\prime} / 7=5 & 5 \cdot y_{2}^{\prime} \equiv 1(\bmod 7) \quad y_{1}^{\prime}=3 \\
& \\
y_{2}^{\prime}=3 \\
x \equiv & r_{1}^{\prime} \cdot M_{1}^{\prime} \cdot y_{1}^{\prime}+r_{2}^{\prime} \cdot M_{2}^{\prime} \cdot y_{2}^{\prime} \\
& \equiv 3 \cdot 3 \cdot 7+5 \cdot 3 \cdot 5=63+75=138=33(\bmod 35)
\end{array}
$$

that are natural integers from the sequence :

$$
33,68,103,138,173, \underline{208}, 243, \ldots
$$

i.e. from the arithmetic progression : $35 k+33$

Interlude: Congruence relation powerfulness

- \equiv is an equivalence relation.

$$
\begin{aligned}
a & \equiv b \\
c & \equiv d \\
\hline a+c & \equiv b+d \\
a c & \equiv b d
\end{aligned}
$$

- Let us compare the resolution of the two following systems :

$$
A:\left\{\begin{array}{l}
x \equiv 3(\bmod 5) \\
x \equiv 5(\bmod 7)
\end{array} \quad B:\left\{\begin{array}{l}
x \equiv 13(\bmod 5) \\
x \equiv 5(\bmod 7)
\end{array}\right.\right.
$$

- $A: x \equiv 3.3 .7+5.3 .5=63+75=138=33(\bmod 35)$
- $B: x \equiv 13.3 .7+5.3 .5=273+75=348=33(\bmod 35)$

Interlude: What does the Chinese Remainders Theorem

 bijection?- Chinese Remainders Theorem associates to every prime modules non-contradictory congruences system an arithemtic progression.
- Let us call E the set of prime modules congruences systems. Let us call E^{\prime} the set of arithmetic progressions.

E	$\rightarrow E^{\prime}$
$s c_{1}$	$\mapsto p a_{1}$
$s c_{2}$	$\mapsto p a_{2}$
$s c_{1} \wedge s c_{2}$	$\mapsto p a_{1} \cap p a_{2}$

- Moreover,

$$
\left(s c_{1} \Rightarrow s c_{2}\right) \Leftrightarrow\left(p a_{1} \subset p a_{2}\right)
$$

Interlude : Recalls

- An arithmetic progression being a part of \mathbb{N}, it admits a smallest element. We will choose in the following to represent an arithmetic progression by its smallest element.
- E and E^{\prime} are two given arithmetic progressions, $E \subset E^{\prime} \Rightarrow n^{\prime} \leq n$
- A set E provided with a partial order relation is a lattice $\Leftrightarrow \forall a \in E, \forall b \in E,\{a, b\}$ admits a least upper bound and a greatest lower bound.
- The set of prime modules congruences systems (all modules being differents) is a lattice provided with a partial order (based on logical implication relationship $(\Rightarrow))$.
- The set of arithmetic progressions is a lattice provided with a partial order (based on set inclusion relationship (\subset)).

Interlude : Let us observe more precisely the trc bijection intervening in Chinese Remainders Theorem

- What are the solutions obtained by Chinese Remainders Theorem ? $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \rightarrow \mathbb{Z} / 15 \mathbb{Z}$

$(0,0) \mapsto 0$
$(0,1) \mapsto 6$
$(0,2) \mapsto 12$
$(0,3) \mapsto 3$
$(0,4) \mapsto 9$
$(1,0) \mapsto 10$
$(1,1) \mapsto 1$
$(1,2) \mapsto 7$
$(1,3) \mapsto 13$
$(1,4) \mapsto 4$
$(2,0) \mapsto 5$
$(2,1) \mapsto 11$
$(2,2) \mapsto 2$
$(2,3) \mapsto 8$
$(2,4) \mapsto 14$

- In this array, line $(1,3) \mapsto 13$ must be read "the set of numbers that are congruent to $1(\bmod 3)$ and to $3(\bmod 5)$ is equal to the set of numbers that are congruent to $13(\bmod 15)$ ". It is interesting to notice that the same line can be read " 13 is congruent to $1(\bmod 3)$ and to $3(\bmod 5)$ " (fractality).
- Peano's arithmetic axioms: let us add $(1,1)$ recursively from $(0,0)$ (Succ function).

Interlude : Let us observe more precisely trc bijection intervening in Chinese Remainders Theorem

$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \rightarrow \mathbb{Z} / 105 \mathbb{Z}$

$(0,0,0) \mapsto 0$	$(0,1,0) \mapsto 21$	$(0,2,0) \mapsto 42$	$(0,3,0) \mapsto 63$	$(0,4,0) \mapsto 84$
$(0,0,1) \mapsto 15$	$(0,1,1) \mapsto 36$	$(0,2,1) \mapsto 57$	$(0,3,1) \mapsto 78$	$(0,4,1) \mapsto 99$
$(0,0,2) \mapsto 30$	$(0,1,2) \mapsto 51$	$(0,2,2) \mapsto 72$	$(0,3,2) \mapsto 93$	$(0,4,2) \mapsto 9$
$(0,0,3) \mapsto 45$	$(0,1,3) \mapsto 66$	$(0,2,3) \mapsto 87$	$(0,3,3) \mapsto 3$	$(0,4,3) \mapsto 24$
$(0,0,4) \mapsto 60$	$(0,1,4) \mapsto 81$	$(0,2,4) \mapsto 102$	$(0,3,4) \mapsto 18$	$(0,4,4) \mapsto 39$
$(0,0,5) \mapsto 75$	$(0,1,5) \mapsto 96$	$(0,2,5) \mapsto 12$	$(0,3,5) \mapsto 33$	$(0,4,5) \mapsto 54$
$(0,0,6) \mapsto 90$	$(0,1,6) \mapsto 6$	$(0,2,6) \mapsto 27$	$(0,3,6) \mapsto 48$	$(0,4,6) \mapsto 69$
$(1,0,0) \mapsto 70$	$(1,1,0) \mapsto 91$	$(1,2,0) \mapsto 7$	$(1,3,0) \mapsto 28$	$(1,4,0) \mapsto 49$
$(1,0,1) \mapsto 85$	$(1,1,1) \mapsto 1$	$(1,2,1) \mapsto 22$	$(1,3,1) \mapsto 43$	$(1,4,1) \mapsto 64$
$(1,0,2) \mapsto 100$	$(1,1,2) \mapsto 16$	$(1,2,2) \mapsto 37$	$(1,3,2) \mapsto 58$	$(1,4,2) \mapsto 79$
$(1,0,3) \mapsto 10$	$(1,1,3) \mapsto 31$	$(1,2,3) \mapsto 52$	$(1,3,3) \mapsto 73$	$(1,4,3) \mapsto 94$
$(1,0,4) \mapsto 25$	$(1,1,4) \mapsto 46$	$(1,2,4) \mapsto 67$	$(1,3,4) \mapsto 88$	$(1,4,4) \mapsto 4$
$(1,0,5) \mapsto 40$	$(1,1,5) \mapsto 61$	$(1,2,5) \mapsto 82$	$(1,3,5) \mapsto 103$	$(1,4,5) \mapsto 19$
$(1,0,6) \mapsto 55$	$(1,1,6) \mapsto 76$	$(1,2,6) \mapsto 97$	$(1,3,6) \mapsto 13$	$(1,4,6) \mapsto 34$
$(2,0,0) \mapsto 35$	$(2,1,0) \mapsto 56$	$(2,2,0) \mapsto 77$	$(2,3,0) \mapsto 98$	$(2,4,0) \mapsto 14$
$(2,0,1) \mapsto 50$	$(2,1,1) \mapsto 71$	$(2,2) \mapsto 92$	$(2,3,1) \mapsto 8$	$(2,4,1) \mapsto 29$
$(2,0,2) \mapsto 65$	$(2,1,2) \mapsto 86$	$(2,2,2) \mapsto 2$	$(2,3,2) \mapsto 23$	$(2,4,2) \mapsto 44$
$(2,0,3) \mapsto 80$	$(2,1,3) \mapsto 101$	$(2,3) \mapsto 17$	$(2,3,3) \mapsto 38$	$(2,4,3) \mapsto 59$
$(2,0,4) \mapsto 95$	$(2,1,4) \mapsto 11$	$(2,4) \mapsto 32$	$(2,3,4) \mapsto 53$	$(2,4,4) \mapsto 74$
$(2,0,5) \mapsto 5$	$(2,1,5) \mapsto 26$	$(2,2,5) \mapsto 47$	$(2,3,5) \mapsto 68$	$(2,4,5) \mapsto 89$
$(2,0,6) \mapsto 20$	$(2,1,6) \mapsto 41$	$(2,2,6) \mapsto 62$	$(2,3,6) \mapsto 83$	$(2,4,6) \mapsto 104$

- Same remark as for previous page concerning the two possible manners to read each line.

restricted_trc bijection

- Let us define restricted_trc bijection as the bijection that associates to a congruences system the smallest natural integer of the arithmetic progression the Chinese Remainders Theorem associates to it.
- Consequence of the fact that trc (and restricted_trc) are bijections
restricted_trc bijection associating to each prime modules congruences system with modules some m_{i} all differents a natural integer from the finite part \mathbb{N} that is between 0 and $\prod_{i=1}^{k} m_{i}$, if $s c_{1} \Rightarrow s c_{2}$ and $s c_{1} \neq s c_{2}$ then the $s c 1$ congruences system solution (the natural integer paired with $s c_{1}$ by restricted_trc bijection) is strictly greater than the $s c_{2}$ congruences system solution.

Let us provide an example of paired integer by

 restricted_trc bijection of a t-uple and of the t-uples that are its projection according to some of its coordinates- Let us study 3 -uple $(1,4,3)$ projections.

$$
\begin{aligned}
\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} & \rightarrow \mathbb{N} \\
(1,4,3) & \mapsto 94 \\
\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} & \rightarrow \mathbb{N} \\
(1,4) & \mapsto 4 \\
\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} & \rightarrow \mathbb{N} \\
(1,3) & \mapsto 10 \\
\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} & \rightarrow \mathbb{N} \\
(4,3) & \mapsto 24
\end{aligned}
$$

- 94 has three integers paired with itself that are strictly lesser than it by restricted_trc bijection.
- 94 projects itself in natural integers strictly lesser than it because $3.5<3.7<5.7<94<3.5 .7$.

Interlude: Fermat's Infinite Descent

- If an even integer should not verify Goldbach Conjecture, there should be another even integer lesser than the first one that should not verify Goldbach Conjecture neither and step by step, like this, we proceed until reaching so little integers that we know they verify Goldbach Conjecture.
- Exists no infinite strictly decreasing sequence of natural integers.
- Reductio ad absurdum :
- we suppose that x is the smallest such that $P(x)$.
- we show that then $P\left(x^{\prime}\right)$ with $x^{\prime}<x$.
- we reached a contradiction.
(If $P(n)$ for a given natural integer n, there exists a non-empty part of \mathbb{N} containing an element that verifies property P.
This part admits a smallest element. In our case, property P consists in not verifying Goldbach Conjecture)

Recall: We try to reach a contradiction from the following hypothesis:

- $p_{1}, \ldots, p_{k} \in \mathbb{P}_{1}^{*}(x), m_{j_{1}}, \ldots, m_{j_{k}} \in \mathbb{P}_{2}^{*}(x)$. $\exists x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}$,

$$
\mathcal{S}_{0}\left\{\begin{array}{l}
x \equiv p_{1}\left(\bmod m_{j_{1}}\right) \\
x \equiv p_{2}\left(\bmod m_{j_{2}}\right) \\
\cdots \\
x \equiv p_{k}\left(\bmod m_{j_{k}}\right)
\end{array}\right.
$$

- Note : some modules can be equal.

First step

- System transformation to order modules according to an increasing order and to eliminate redundancies.
- $p_{1}^{\prime}, \ldots, p_{k}^{\prime} \in \mathbb{P}_{1}^{*}(x), n_{j_{1}}, \ldots, n_{j_{k}} \in \mathbb{P}_{2}^{*}(x)$. $\exists \quad x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}$,

$$
\mathcal{S}\left\{\begin{array}{l}
x \equiv p_{1}^{\prime}\left(\bmod n_{j_{1}}\right) \\
x \equiv p_{2}^{\prime}\left(\bmod n_{j_{2}}\right) \\
\cdots \\
x \equiv p_{k}^{\prime}\left(\bmod n_{j_{k}}\right)
\end{array}\right.
$$

- \mathcal{S} has d that is paired with itself by restricted_trc bijection.

Where can contradiction come from ?

- It can come from Fermat's Infinite Descent.
- We know that restricted_trc bijection provides as solution for \mathcal{S} the natural integer d that is the smallest natural integer of the arithmetic progression associated to \mathcal{S} by the Chinese Remainders Theorem.
- \mathcal{S} system is such that d doesn't verify Goldbach Conjecture.
- Conclusion : We are looking for a \mathcal{S}^{\prime} congruences system, implied by \mathcal{S} and \neq to \mathcal{S}, to what restricted_trc bijection associates a natural integer $d^{\prime}<d$, with d^{\prime} doesn't verify Goldbach Conjecture neither.

We look for $\mathcal{S}^{\prime} \Leftarrow \mathcal{S}$ that has $d^{\prime}<d$ paired with it by restricted_trc bijection.

- Let us consider a \mathcal{S}^{\prime} congruences system constituted by a certain number of congruences of \mathcal{S} according to all differents odd prime natural integers m_{i}, i an integer between 1 and k, such that $d>\prod_{i=1}^{k} m_{i}$;
- First problem : To descend one Fermat's descent step, it is necessary that $d^{\prime}<d$.

But we saw that $d^{\prime}<d$ comes from restricted_trc bijection.

- Second problem: How to be sure that d' doesn't verify Goldbach Conjecture neither ?

For this aim, we need that congruences kept from initial \mathcal{S} congruences system are such that d^{\prime} is congruent to all $\mathbb{P}_{1}^{*}\left(d^{\prime}\right)$ elements according to a module that is an element of $\mathbb{P}_{2}^{*}\left(d^{\prime}\right)$.

- (Said in another way, we must be sure that removing congruences to make strictly decrease the congruences system solution, we won't "lose" congruences that ensured the Goldbach Conjecture non-verification.)

Second step

- We keep from the resulting congruences system a maximum of congruences in a new system \mathcal{S}^{\prime} in such a way that d, the initial system \mathcal{S} 's solution, is strictly greater than the moduli kept in the new system product and in such a way that every module intervening in a kept congruence of the system is lesser than $\sqrt{d^{\prime}}$. .
- $p_{1}^{\prime}, \ldots, p_{k^{\prime}}^{\prime} \in \mathbb{P}_{1}^{*}(x), n_{j_{1}}, \ldots, n_{j_{k^{\prime}}} \in \mathbb{P}_{2}^{*}(x)$.
$\exists \quad x \in 2 \mathbb{N} \backslash\{0,2,4\}, x \geq 4.10^{18}$,

$$
\mathcal{S}^{\prime}\left\{\begin{array}{l}
x \equiv p_{1}^{\prime}\left(\bmod n_{j_{1}}\right) \\
x \equiv p_{2}^{\prime}\left(\bmod n_{j_{2}}\right) \\
\cdots \\
x \equiv p_{k^{\prime}}^{\prime}\left(\bmod n_{j_{k^{\prime}}}\right)
\end{array}\right.
$$

- $d>\prod_{u=1}^{k^{\prime}} n_{j u}$
- p_{x}^{\prime} are all differents odd prime natural integers and n_{y} are all differents odd prime natural integers ordered according to an increasing order.
- \mathcal{S}^{\prime} is paired with d^{\prime} by restricted_tre bijection.

Why d^{\prime} doesn't verify Goldbach Conjecture neither ?
-

$$
d^{\prime}<\prod_{u=1}^{k^{\prime}} n_{j_{u}}<d
$$

- So

$$
\frac{d^{\prime}}{2}<\frac{d}{2} \Leftrightarrow \mathbb{P}_{1}^{*}\left(d^{\prime}\right) \subset \mathbb{P}_{1}^{*}(d) .
$$

- But

$$
\forall m_{i} \in \mathbb{P}_{2}^{*}(d),
$$

$$
d^{\prime} \equiv d\left(\bmod m_{i}\right) .
$$

- Then

$$
\forall p_{i} \in \mathbb{P}_{1}^{*}(d), \exists m_{i} \in \mathbb{P}_{2}^{*}(d)
$$

$$
d \equiv p_{i}\left(\bmod m_{i}\right)
$$

- \Leftrightarrow
$\forall p_{i} \in \mathbb{P}_{1}^{*}(d), \exists m_{i} \in \mathbb{P}_{2}^{*}(d)$,
$d^{\prime} \equiv p_{i}\left(\bmod m_{i}\right)$
- \Rightarrow
$\forall p_{i} \in \mathbb{P}_{1}^{*}\left(d^{\prime}\right), \exists m_{i} \in \mathbb{P}_{2}^{*}\left(d^{\prime}\right)$,
$d^{\prime} \equiv p_{i}\left(\bmod m_{i}\right)$
- The implication is true because every kept module is an element of $\mathbb{P}_{2}^{*}\left(d^{\prime}\right)$.
- This last line expresses the fact that d^{\prime} doesn't verify Goldbach

Conclusion

- If one natural even integer d doesn't verify Goldbach Conjecture C.G., we are ensured to find another natural even integer $d^{\prime}<d$ not verifying Goldbach Conjecture neither, we established a contradiction from the hypothesis that d was the smallest natural even integer not verifying Goldbach Conjecture
- We so established that we always reach a contradiction when we start from the hypothesis that some natural even integer doesn't verify Goldbach Conjecture.
- For this aim, we used what we could call a "Residue Numeration System in Finite Parts of \mathbb{N} "
- Congruence relationship makes of \mathbb{N} the natural integers set a fractal set.

