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1 Introduction

Goldbach’s conjecture states that each even integer except 2 is the sum of two prime numbers. This
note presents a set of invariant relations uncovered between some Goldbach’s decompositions’numbers,
the decompositions being coded in a 4 letters language. We will try to use those invariant relations to
attempt to obtain a recurrence demonstration of Goldbach’s binary conjecture. In the following, one is
interested in decompositions of an even number n as a sum of two odd integers p + q with 3 6 p 6 n/2,
n/2 6 q 6 n− 3 and p 6 q. We call p a n’s first range sommant and q a n’s second range sommant.

Notations :
We will designate by :

• a : an n’s decomposition of the form p+ q with p and q primes ;

• b : an n’s decomposition of the form p+ q with p compound and q prime ;

• c : an n’s decomposition of the form p+ q with p prime and q compound ;

• d : an n’s decomposition of the form p+ q with p and q compound numbers.

Example :

40 3 5 7 9 11 13 15 17 19
37 35 33 31 29 27 25 23 21

l40 a c c b a c d a c

2 The main array

We designate by T = (L,C) = ( ln,m ) the array containing ln,m elements that are one of a, b, c, d letters.
n belongs to the set of even integers greater than or equal to 6. m, belonging to the set of odd integers
greater than or equal to 3, is an element of list of n first range sommants.

Let us consider g function defined by :

g : 2N → 2N + 1
x 7→ 2

⌊x− 2
4

⌋
+ 1

g(6) = 3, g(8) = 3, g(10) = 5, g(12) = 5, g(14) = 7, g(16) = 7, etc.
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g(n) function defines the greatest of n first range sommants.

As we only consider n decompositions of the form p+q where p 6 q, in T will only appear letters ln,m such
thatm 6 2

⌊n− 2
4

⌋
+1 in such a way that T array first letters are : l6,3, l8,3, l10,3, l10,5, l12,3, l12,5, l14,3, l14,5, l14,7, etc.

Here are first lines of array T .

C 3 5 7 9 11 13 15 17
L
6 a
8 a
10 a a
12 c a
14 a c a
16 a a c
18 c a a d
20 a c a b
22 a a c b a
24 c a a d a
26 a c a b c a
28 c a c b a c
30 c c a d a a d
32 a c c b c a b
34 a a c d a c b a
36 c a a d c a d a
. . .

Figure 1 : words of even numbers between 6 and 36

Remarks :

1) words on array’s diagonals called diagonal words have their letters either in Aab = {a, b} alphabet or
in Acd = {c, d} alphabet.

2) a diagonal word codes decompositions that have the same second range sommant.
For instance, on Figure 4, letters aaabaa of the diagonal that begins at letter l26,3 = a code decompositions
3 + 23, 5 + 23, 7 + 23, 9 + 23, 11 + 23 and 13 + 23.

3) let us designate by ln the line whose elements are ln,m. Line ln contains
⌊n− 2

4

⌋
elements.

4) n being fixed, let us call Cn,3 the column formed by lk,3 for 6 6 k 6 n.

In this column Cn,3, let us distinguish two parts, the “top part” and the “bottom part” of the column.

Let us call Hn,3 column’s “top part”, i.e. set of lk,3 where 6 6 k 6
⌊n+ 4

2

⌋
.

Let us call Bn,3 column’s “bottom part”, i.e. set of lk,3 where
⌊n+ 4

2

⌋
< k 6 n.
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6 :
8 :
10 :
12 :
14 :
16 :
18 :
20 :
22 :
24 :
26 :
28 :
30 :
32 :
34 :

a

a

a a

c a

a c a

a a c

c a a d

a c a b

a a c b a

c a a d a

a c a b c a

c a c b a c

c c a d a a d

a c c b c a b

a a c d a c b a

Za = 5
Zc = 2

Ya = 5
Yc = 3

← Xa = 4, Xb = 1, Xc = 2, Xd = 1

H34,3

B34,3

Figure 2 : n = 34

To better understand countings in next section, we will use projection P of line n on bottom part of first
column Bn,3 that “associates” letters at both extremities of a diagonal (it associates to the letter that
codes p+ q decomposition the letter that codes 3 + q decomposition). If we consider application proj such
that proj(a) = proj(b) = a and proj(c) = proj(d) = c then, since 3 is prime, proj(ln,2k+1) = ln−2k+2,3.

We can also understand the effect of this projection (that preserves second range sommant) by analyzing
decompositions :

• if p+ q is coded by an a or a b letter, it corresponds to two possible cases in which q is prime, and
so 3 + q decomposition, containing two prime numbers, will be coded by an a letter ;

• if p + q is coded by a c or a d letter, it corresponds to two possible cases in which q is compound,
and so 3 + q decomposition, of the form prime+ compound will be coded by a c letter.

We will also use in next section projection P ′ of line n on top part of the first column Hn,3 that associates
to the letter that codes p + q decomposition the letter that codes 3 + p decomposition (let us note that
first range sommant becomes second range sommant) ; let us analyze how such a projection will affect
decompositions :

• if p + q is coded by an a or c letter, it corresponds to the two possible cases in which p is prime,
then 3 + p decomposition, containing two prime numbers will be coded by an a letter ;

• if p+ q is coded by a b or d letter, it corresponds to the two possibl cases in which p is compound,
then 3 + p decomposition, of the form prime+ compound will be coded by a c letter.

3 Computations

1) We note :

• Xa(n) the number of n’s decompositions of the form prime+ prime ;

• Xb(n) the number of n’s decompositions of the form compound+ prime ;

• Xc(n) the number of n’s decompositions of the form prime+ compound ;

• Xd(n) the number of n’s decompositions of the form compound+ compound.
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Xa(n), Xb(n), Xc(n), Xd(n) variables are counting logical assertions numbers.

Xa(n) +Xb(n) +Xc(n) +Xd(n) =
⌊n− 2

4

⌋
is the number of elements of line n.

Example : n = 34 :
Xa(34) = #{3 + 31, 5 + 29, 11 + 23, 17 + 17} = 4
Xb(34) = #{15 + 19} = 1.
Xc(34) = #{7 + 27, 13 + 21} = 2
Xd(34) = #{9 + 25} = 1

2) Let Ya(n) (resp. Yc(n)) being the number of a letters (resp. c) that appear in Bn,3. We recall that
there are only a and c letters in first column because it contains letters associated with decompositions of
the form 3 + x and because 3 is prime.

Example :

• Ya(34) = #{3 + 17, 3 + 19, 3 + 23, 3 + 29, 3 + 31} = 5

• Yc(34) = #{3 + 21, 3 + 25, 3 + 27} = 3

3) Because of P projection that is a bijection, and because of a, b, c, d letters definitions, Ya(n) = Xa(n) +
Xb(n) and Yc(n) = Xc(n) + Xd(n). Thus, trivially, Ya(n) + Yc(n) = Xa(n) + Xb(n) + Xc(n) + Xd(n) =⌊n− 2

4

⌋
.

Example :
Ya(34) = #{3 + 17, 3 + 19, 3 + 23, 3 + 29, 3 + 31}
Xa(34) = #{3 + 31, 5 + 29, 11 + 23, 17 + 17}
Xb(34) = #{15 + 19}

Yc(34) = #{3 + 21, 3 + 25, 3 + 27}
Xc(34) = #{7 + 27, 13 + 21}
Xd(34) = #{9 + 25}

4) Let Za(n) (resp. Zc(n)) being the number of a letters (resp. c) that appear in Hn,3.

Example :

• Za(34) = #{3 + 3, 3 + 5, 3 + 7, 3 + 11, 3 + 13} = 5

• Zc(34) = #{3 + 9, 3 + 15} = 2

Za(n) + Zc(n) =
⌊n− 4

4

⌋
.

Reminding identified properties

Ya(n) = Xa(n) +Xb(n) (1)

Yc(n) = Xc(n) +Xd(n) (2)

Ya(n) + Yc(n) = Xa(n) +Xb(n) +Xc(n) +Xd(n) =
⌊n− 2

4

⌋
(3)

Za(n) + Zc(n) =
⌊n− 4

4

⌋
(4)
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Let us add four new properties to those ones :

Xa(n) +Xc(n) = Za(n) + δ2p(n) (5)

with δ2p(n) equal to 1 when n is the double of a prime number and equal to 0 otherwise.

Xb(n) +Xd(n) = Zc(n) + δc−imp(n) (6)

with δ2odd−compound(n) equal to 1 when n is the double of a compound odd number and equal to 0
otherwise (when there exists k such that n = 4k (doubles of even numbers) or when n is the double of a
prime number).

Zc(n)− Ya(n) = Yc(n)− Za(n)− δ4k+2(n) (7)

with δ4k+2(n) equal to 1 when n is the double of an odd number and 0 otherwise.

Zc(n)− Ya(n) = Xd(n)−Xa(n)− δ2odd−compound(n) (8)

Properties 1, 2 and 3 come simply from projection P ’s definition.
Properties 5 and 6 come simply from projection P ′’s definition.
One can notice a certain redundancy between the 3 booleans that are introduced here δ2p(n), δ2odd−compound(n)
and δ4k+2(n). Trivial logical assertion (δ2p(n) ∨ δ2odd−compound(n))→ δ4k+2(n) is always verified.

4 Demonstrations

4.1 Utilitaries

Let us demonstrate that if n is an odd number double (i.e. of the form 4k+2), then
⌊n− 2

4

⌋
=
⌊n− 4

4

⌋
+1.

Indeed, the left part of the equality is equal to
⌊ (4k + 2)− 2

4

⌋
=
⌊4k

4

⌋
= k.

The right part of the equality is equal to
⌊ (4k + 2)− 4

4

⌋
+ 1 =

⌊4k − 2
4

⌋
+ 1 = (k − 1) + 1 = k.

Let us demonstrate that if n is an even number double (i.e. of the 4k), then
⌊n− 2

4

⌋
=
⌊n− 4

4

⌋
.⌊4k − 2

4

⌋
= k − 1 and

⌊4k − 4
4

⌋
= k − 1.

4.2 Properties 7 and 8

4.2.1 Property 7

Property 7 enonciates that Zc(n) − Ya(n) = Xd(n) −Xa(n) − δ2odd−compound(n) with δ2odd−compound(n)
that equals 1 if n is the double of an odd compound integer and equals 0 otherwise.

By definition, Zc(n) counts the number of decompositions of the form α = 3 + compound with compound
strictly lesser than n/2 (let us call E this decompositions’set). So Zc(n) counts also the number of n’s
decompositions of the form β = compound+ y by bijection of second range sommant of α decomposition
on first range sommant of β decomposition. But the number of decompositions of the form compound+ y
is equal to Xb(n) +Xd(n) by definition of those variables.

By definition, Ya(n) counts the number of decompositions of the form γ = 3 + prime with prime strictly
greater than n/2 (let us call F this decompositions’set). So Ya(n) counts also the number of n’s decom-
positions of the form η = x+ prime by bijection of second range sommant of γ decomposition on second
range sommant of η decomposition. But the number of decompositions of the form x+ prime is equal to
Xb(n) +Xa(n) by definition of those variables.

n’s decompositions of the form compound + prime are at the same time in E and in F . By computing
Zc(n)−Ya(n), we also obtain the value ofXd(n)−Xa(n) by definition of what variables Ya(n), Zc(n), Xd(n)
et Xa(n) count.
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4.2.2 Property 8

Let us demonstrate that Zc(n)− Ya(n) = Yc(n)−Za(n)− δ4k+2(n) with δ4k+2(n) that equals 1 if n is the
double of an odd number (∃k > 3, n = 4k + 2) and 0 otherwise.

We use a recurrence reasoning :

i) We initialize recurrences according to the 3 types of numbers that must be studied : even doubles de
pairs (4k), odd doubles (4k + 2) with the odd being prime or compound.

Proprety 8 is true for n = 14, 16 and 18. Let us provide variables values in an array for those 3 even
numbers :

n Zc(n) Ya(n) Yc(n) Za(n) δ4k+2
14 0 2 1 2 1
16 0 2 1 3 0
18 0 2 2 3 1

ii) Property 8 is equivalent to Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n).
Four cases must be considered : two cases wherein n is an odd’s double (prime or compound) and n+ 2
is an even’s double and two cases wherein n is an even’s double and n + 2 is an odd’s double (prime or
compound).

iia) n even’s double and n+ 2 prime’s double :

n δ2p δ2odd−compound δ4k+2
n 0 0 0

n+ 2 1 0 1

We make the hypothesis that property 8 is true for n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate that it is true for n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

We have Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n).

Let us remain property 3 concerning Y s:

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), we can, par by our recurrence hypothesis and by property (3), replace the left member of the
equality by Za(n) + Zc(n) + 1 and then by Ya(n) + Yc(n) + 1 (by (H)) and then by

⌊n− 2
4

⌋
+ 1 (by (3))

that is equal to
⌊n

4

⌋
.

But in (Ccl), we can also replace the right member of the equality by
⌊n

4

⌋
because of property (3).

We have for n+ 2 an equality between left and right sides, i.e. property 8 is verified by n+ 2. From the
hypothesis that property is true for n, we have inferred property is true for n+ 2.

iib) n even’s double and n+ 2 odd compound’s double :

n δ2p δ2odd−compound δ4k+2
n 0 0 0

n+ 2 0 1 1
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Let us make the hypothesis that property 8 is true for n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate it is true for n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

We have Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n).

We have Ya(n+ 2) = Ya(n) + 1 and Yc(n+ 2) = Yc(n).

Let us recall property 3 concerning Y s :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), one can, by recurrence hypothesis and by property 3, replace equality’s left member by Za(n) +
Zc(n) + 1, then by Ya(n) + Yc(n) + 1 (because of (H)), and then by

⌊n− 2
4

⌋
+ 1 (because of (3)) that is

equal to
⌊n

4

⌋
.

But in (Ccl), one can also replace equality’s right member by
⌊n

4

⌋
because of Ya(n)’s and Yc(n)’s evolu-

tions.

There is also for n+ 2 equality between left and right members of the equation, i.e. property 8 is verified
by n+ 2. From the hypothesis that property is true for n, we deduced property is true for n+ 2.

iic) n prime’s double and n+ 2 even’s double :

n δ2p δ2odd−compound δ4k+2
n 1 0 1

n+ 2 0 0 0

Let us make the hypothesis that property 8 is true for n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate it is true for n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

We have Za(n+ 2) = Za(n) + 1 et Zc(n+ 2) = Zc(n).

Let us recall property 3 concerning Y s :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), one can, by recurrence hypothesis and by property 3, replace equality’s left member by Za(n) +
Zc(n)+1 then by Ya(n)+Yc(n) (because of (H)), and then by

⌊n− 2
4

⌋
(because of (3)) that is equal to

⌊n
4

⌋
.

But in (Ccl), one can also replace equality’s right member by
⌊n

4

⌋
because of property (3).

There is also for n+ 2 equality between left and right members of the equation, i.e. property 8 is verified
by n+ 2. From the hypothesis that property is true for n, we deduced property is true for n+ 2.
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iid) n odd compound’s double and n+ 2 even double :

n δ2p δ2odd−compound δ4k+2
n 0 1 1

n+ 2 0 0 0

Let us make the hypothesis that property 8 is true for n,

Za(n) + Zc(n) + δ4k+2(n) = Ya(n) + Yc(n) (H)

Let us demonstrate it is true for n+ 2,

Za(n+ 2) + Zc(n+ 2) + δ4k+2(n+ 2) = Ya(n+ 2) + Yc(n+ 2) (Ccl)

We have Za(n+ 2) = Za(n) et Zc(n+ 2) = Zc(n) + 1.

Let us recall property 3 concerning Y s :

Ya(n) + Yc(n) =
⌊n− 2

4

⌋
(3)

In (Ccl), one can, by recurrence hypothesis and by property 3, replace equality’s left member by Za(n) +
Zc(n) + 1 puis par Ya(n) + Yc(n) (because of (H)) then by

⌊n− 2
4

⌋
(because of (3)) that is equal to

⌊n
4

⌋
.

But in (Ccl), one can also replace equality’s right member by
⌊n

4

⌋
because of property (3).

There is also for n+ 2 equality between left and right members of the equation, i.e. property 8 is verified
by n+ 2. From the hypothesis that property is true for n, we deduced property is true for n+ 2.

5 Variables evolution

5.1 Counting decompositions of the forme 3 + p (called “bottom-ones”)

1) Za(n + 2) = Za(n) and Zc(n + 2) = Zc(n) when n is an even double. Indeed, Za(n) (resp. Zc(n))
counts number of primes (resp. odd compound numbers) strictly lesser than n

2 and there are as many
as primes (resp. odd compound numbers) lesser than an even number than there are primes (resp. odd
compound numbers) lesser than its immediate successor.

2) Za(n+ 2) = Za(n) + 1 and Zc(n+ 2) = Zc(n) when n is a prime double ;

3) Za(n+ 2) = Za(n) and Zc(n+ 2) = Zc(n) + 1 when n is an odd compound number’s double.

5.2 Counting decompositions of the form 3 + q (called “top-ones”)

In the case in which n + 2 is an odd’s double, we only add a number to Hn+2,3 interval ; if this number
n− 1 is prime (resp. compound), Ya(n+ 2) = Ya(n) + 1 (resp. Yc(n+ 2) = Yc(n) + 1).

In the case in which n+ 2 is an even’s double, we only add a number to the top extremity of the interval
and we take off a number at the bottom extremity of the interval. From this fact, 4 cases have to be
studied. Let us study how the decompositions’set Hn+2,3 evoluate.

• if n− 1 and n

2 are both primes, we take off at the bottom and we put on at the top of the interval
Hn+2,3 two letters of same kind, so Ya(n+ 2) = Ya(n) ;

• if n− 1 is prime and n

2 is compound then Ya(n+ 2) = Ya(n) + 1 ;
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• if n− 1 is compound and n

2 is prime then Ya(n+ 2) = Ya(n)− 1 ;

• if n−1 and n

2 are both compound, we take off at the bottom and we put on at the top of the interval
Hn+2,3 two letters of same kind, then Ya(n+ 2) = Ya(n).

6 Using variables’gaps

We are going to show that Xa(n) can never be equal to 0 for n > C, i.e. that every even number n > C
can be written as a sum of two primes, i.e. verifies binary Goldbach’s conjecture.

Let us present in more details what variables Za(n), Zc(n), Ya(n) et Yc(n) represent.

• Za(n) counts with a maximum error of 2 the number of prime numbers that are lesser than or equal
to n

2 ;

Za(n) = π
(n

2

)
+ δZa(n) (9)

with δZa
(n) equal to −2 if n is a prime’s double and equal to −1 otherwise ;

• Zc(n) counts with a maximum error of 1 the number of odd compound numbers that are lesser than
or equal to n

2 ;

Zc(n) =
⌊n

4

⌋
− π

(n
2

)
+ δZc

(n) (10)

with δZc(n) equal to 1 if n is a prime’s double and equal to 0 otherwise ;

• Ya(n) count with a maximum error of 1 the number of prime numbers that are between n

2 and n ;

Ya(n) = π(n)− π
(n

2

)
+ δYa

(n) (11)

with δYa
(n) equal to −1, 0 or 1 (δYa

(n) is equal to 0 when n − 1 and n/2 are both primes or both
compound, δYa

(n) is equal to −1 when n− 1 is prime while n/2 is compound, and at last, δYa
(n) is

equal to 1 when n− 1 is compound while n/2 is prime) ;

• Yc(n) counts with a maximum error of 1 the number of odd compound numbers that are between
n

2 and n ;

Yc(n) =
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) (12)

with δYc(n) equal to −1, 0 or 1. δYc(n)’s values will be provided in a detailled way in section
demonstrating property 12.

6.1 Demonstrations of properties 9, 10, 11 and 12

6.1.1 Property 9 : invariant relation concerning Za(n)

i) Initialisation : (9) is true for n = 14, 16, 18 and 20.

Indeed, we have :
n Za(n) π

(n
2

)
δZa(n)

14 2 4 −2
16 3 4 −1
18 3 4 −1
20 3 4 −1
22 3 5 −2
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ii) Let us demonstrate by recurrence that if (9) is true for n, it is also true for n+ 2.

Let us make the hypothesis that property 9 is true for n,

Za(n) = π
(n

2

)
+ δZa

(n) (H)

Let us demonstrate it is true for n+ 2,

Za(n+ 2) = π

(
n+ 2

2

)
+ δZa

(n+ 2) (Ccl)

Let us distinguish 4 cases, as in paragraph 4.2.2.

iia) n even’s double, n+ 2 prime’s double.

In that case, Za(n+ 2) = Za(n), π
(
n+ 2

2

)
= π

(n
2

)
+ 1 and δZa(n) = −1.

So we have,
Za(n+ 2) = Za(n)

= π
(n

2

)
+ δZa(n)

= π

(
n+ 2

2

)
− 1 + δZa(n)

= π

(
n+ 2

2

)
− 1− 1

= π

(
n+ 2

2

)
+ δZa(n+ 2)

with δZa
(n+ 2) = −2 as expected since in that case, n+ 2 is a prime’s double.

iib) n even’s double, n+ 2 odd compound’s double.

In that case, Za(n+ 2) = Za(n), π
(
n+ 2

2

)
= π

(n
2

)
and δZa

(n) = −1.

So we have,
Za(n+ 2) = Za(n)

= π
(n

2

)
+ δZa(n)

= π

(
n+ 2

2

)
− 1

= π

(
n+ 2

2

)
+ δZa

(n+ 2)

with δZa
(n+ 2) = −1 as expected since in that case, n+ 2 is an odd compound’s double.

iic) n prime’s double, n+ 2 even’s double.

In that case, Za(n+ 2) = Za(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
and δZa(n) = −2.

So we have,
Za(n+ 2) = Za(n) + 1

= π
(n

2

)
+ δZa(n) + 1

= π

(
n+ 2

2

)
− 2 + 1

= π

(
n+ 2

2

)
− 1

= π

(
n+ 2

2

)
+ δZa(n+ 2)

with δZa
(n+ 2) = −1 as expected since in that case, n+ 2 is an even’s double.
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iid) n odd compound’s double, n+ 2 even’s double.

In that case, Za(n+ 2) = Za(n), π
(
n+ 2

2

)
= π

(n
2

)
and δZa

(n) = −1.

So we have,
Za(n+ 2) = Za(n)

= π
(n

2

)
+ δZa(n)

= π

(
n+ 2

2

)
− 1

= π

(
n+ 2

2

)
+ δZa

(n+ 2)

with δZa
(n+ 2) = −1 as expected since in that case, n+ 2 is an even’s double.

6.1.2 Property 10 : invariant relation concerning Zc(n)

i) Initialisation : (10) is true for n = 14, 16, 18 and 20.

We have :
n Zc(n)

⌊n
4

⌋
π
(n

2

)
δZc(n)

14 0 3 4 1
16 0 4 4 0
18 0 4 4 0
20 1 5 4 0
22 1 5 5 1

and we verify that (10) is true for those 4 numbers.

ii) Let us demonstrate by recurrence that if (10) is true for n, it is also true for n+ 2.

Let us make the hypothesis that property 10 is true for n,

Zc(n) =
⌊n

4

⌋
− π

(n
2

)
+ δZc

(n) (H)

Let us demonstrate it is also true for n+ 2,

Zc(n+ 2) =
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc(n+ 2) (Ccl)

Let us study our 4 cases again.

iia) n even’s double, n+ 2 prime’s double.

Dans ce cas, Zc(n+ 2) = Zc(n),
⌊n+ 2

4

⌋
=
⌊n

4

⌋
, π
(
n+ 2

2

)
= π

(n
2

)
+ 1 et δZc

(n) = 0.

In that case,
Zc(n+ 2) = Zc(n)

=
⌊n

4

⌋
− π

(n
2

)
+ δZc

(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ 1 + δZc

(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ 1 + 0

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc

(n+ 2)

with δZc(n+ 2) = 1 as expected since in that case n+ 2 is a prime’s double.

iib) n even’s double, n+ 2 odd compound’s double.

In that case, Zc(n+ 2) = Zc(n),
⌊n+ 2

4

⌋
=
⌊n

4

⌋
, π
(
n+ 2

2

)
= π

(n
2

)
et δZc(n) = 0.
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So we have,
Zc(n+ 2) = Zc(n)

=
⌊n

4

⌋
− π

(n
2

)
+ δZc(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc

(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc(n+ 2)

with δZc
(n+ 2) = 0 as expected in that case since n+ 2 is an odd compound’s double.

iic) n prime’s double, n+ 2 even’s double.

In that case, Zc(n+ 2) = Zc(n),
⌊n+ 2

4

⌋
=
⌊n

4

⌋
+ 1, π

(
n+ 2

4

)
= π

(n
2

)
et δZc

(n) = 1.

So we have,
Zc(n+ 2) = Zc(n)

=
⌊n

4

⌋
− π

(n
2

)
+ δZc(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

4

)
− 1 + δZc

(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc

(n+ 2)

with δZc
(n+ 2) = 0 as expected since in that case n+ 2 is an even’s double.

iid) n odd compound’s double, n+ 2 even’s double.

In that case, Zc(n+ 2) = Zc(n) + 1,
⌊n+ 2

4

⌋
=
⌊n

4

⌋
+ 1, π

(
n+ 2

2

)
= π

(n
2

)
and δZc

(n) = 0.

So we have,
Zc(n+ 2) = Zc(n)

=
⌊n

4

⌋
− π

(n
2

)
+ δZc

(n)

=
⌊n+ 2

4

⌋
− 1− π

(
n+ 2

2

)
+ 1 + δZc

(n)

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π

(
n+ 2

2

)
+ δZc

(n+ 2)

with δZc(n+ 2) = 0 as expected since in that case n+ 2 is an even’s double.

6.1.3 Property 11 : invariant relation concerning Ya(n)

The objective is to demonstrate why the invariant relation concerning Ya(n) and that is :

Ya(n) = π(n)− π
(n

2

)
+ δYa(n)

is always verified. In this aim, 16 cases are to be distinguished, according to primality characters of 4
numbers : n

2 ,
n+ 2

2 , n − 1 and n + 1, those primality characters having an influence on Ya(n), π(n),

π
(n

2

)
and δYa(n) evolutions.

i) recurrences initialisations : for 5 cases among the 16 to be envisagd, there is a contradiction (we called
them C1 to C5 in bottom of the array below, contradiction coming for cases C1 to C4 from the fact that
one can’t have simmultaneously n/2 and (n+2)/2 that are both prime since they are consecutive integers)
; C5 is a contradiction because if n−1 and n+ 1 ar twin primes, their “father” (the even number between
them) can be divided by 3 and so the half of this father, that is n/2, can’t be a prime number too ; this is

12



represented by crosses in first, third and fourth columns). For the remaining 11 cases, we must initialize
recurrences. In the array below, we provide values that permit easily to verify that for small integers,
property 11 is systematically verified.

n
n/2

is prime
(n+ 2)/2
is prime

n− 1
is prime

n+ 1
is prime

Ya(n) π(n) π(n/2) δYa
(n)

14 x − x − 2 6 4 0
16 − − − x 2 6 4 0
18 − − x x 2 7 4 −1
20 − x x − 3 8 4 −1
22 x − − x 4 8 5 1
26 x − − − 4 9 6 1
36 − x − x 4 11 7 0
48 − − x − 5 15 9 −1
50 − − − − 6 15 9 0
56 − x − − 7 16 9 0
60 − x x x 6 17 10 −1
C1 x x x x − − − −
C2 x x x − − − − −
C3 x x − x − − − −
C4 x x − − − − − −
C5 x − x x − − − −

ii) Let us demonstrate by recurrence that if (11) is true for n, it is true for n+ 2 too.

Let us make the hypothesis that property 11 is true for n,

Ya(n) = π(n)− π
(n

2

)
+ δYa(n) (H)

Let us demonstrate it is true for n+ 2,

Ya(n+ 2) = π(n+ 2)− π
(
n+ 2

2

)
+ δYa(n+ 2) (Ccl)

Let us study the 11 cases listed in last section.

iia) n+ 1 compound, (n+ 2)/2 compound, n/2 prime, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYa

(n) = 0 and Ya(n+ 2) = Ya(n).

So we have,
Ya(n+ 2) = Ya(n)

= π(n)− π
(n

2

)
+ δYa(n)

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa(n+ 2)

since δYa(n+ 2) = 0 in that case. It implies that (Ccl) is verified.

iib) n+ 1 prime, (n+ 2)/2 compound, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
, δYa

(n) = 0 and Ya(n+ 2) = Ya(n).

So we have,
Ya(n+ 2) = Ya(n)

= π(n)− π
(n

2

)
+ δYa

(n)

= π(n+ 2)− 1− π
(
n+ 2

2

)
+ δYa(n+ 2)

13



since δYa
(n+ 2) = −1 in that case. This implies that (Ccl) is verified.

iic) n+ 1 compound, (n+ 2)/2 compound, n/2 prime, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYa

(n) = 1 and Ya(n+ 2) = Ya(n)− 1.

So we have,
Ya(n+ 2) = Ya(n)− 1

= π(n)− π
(n

2

)
+ δYa(n)− 1

= π(n+ 2)− π
(
n+ 2

2

)
+ 1− 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 0 in that case. This implies that (Ccl) is verified.

iid) n+ 1 prime, (n+ 2)/2 prime, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYa(n) = −1 and Ya(n+ 2) = Ya(n) + 1.

So we have,
Ya(n+ 2) = Ya(n) + 1

= π(n)− π
(n

2

)
+ δYa

(n) + 1

= π(n+ 2)− 1− π
(
n+ 2

2

)
+ 1− 1 + 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 0 in that case. This implies that (Ccl) is verified.

iie) n+ 1 compound, (n+ 2)/2 prime, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYa(n) = −1 and Ya(n+ 2) = Ya(n) + 1.

So we have,
Ya(n+ 2) = Ya(n) + 1

= π(n)− π
(n

2

)
+ δYa

(n) + 1

= π(n+ 2)− π
(
n+ 2

2

)
+ 1− 1 + 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 1 in that case. This implies that (Ccl) is verified.

iif) n+ 1 prime, (n+ 2)/2 prime, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYa(n) = 0 and Ya(n+ 2) = Ya(n).

So we have,
Ya(n+ 2) = Ya(n)

= π(n)− π
(n

2

)
+ δYa

(n)

= π(n+ 2)− 1− π
(
n+ 2

2

)
+ 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 0 in that case. This implies that (Ccl) is verified.

iig) n+ 1 compound, (n+ 2)/2 prime, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYa(n) = 0 and Ya(n+ 2) = Ya(n).

14



So we have,
Ya(n+ 2) = Ya(n)

= π(n)− π
(n

2

)
+ δYa(n)

= π(n+ 2)− π
(
n+ 2

2

)
+ 1 + 0

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 1 in that case. This implies that (Ccl) is verified.

iih) n+ 1 prime, (n+ 2)/2 compound, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
, δYa(n) = −1 and Ya(n+ 2) = Ya(n) + 1.

So we have,
Ya(n+ 2) = Ya(n) + 1

= π(n)− π
(n

2

)
+ δYa

(n) + 1

= π(n+ 2)− 1− π
(
n+ 2

2

)
− 1 + 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa(n+ 2)

since δYa(n+ 2) = −1 in that case. This implies that (Ccl) is verified.
iii) n+ 1 compound, (n+ 2)/2 compound, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYa

(n) = −1 and Ya(n+ 2) = Ya(n) + 1.

So we have,
Ya(n+ 2) = Ya(n) + 1

= π(n)− π
(n

2

)
+ δYa

(n) + 1

= π(n+ 2)− π
(
n+ 2

2

)
− 1 + 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 0 in that case. It implies that (Ccl) is verified.

iij) n+ 1 prime, (n+ 2)/2 compound, n/2 prime, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
, δYa(n) = 1 and Ya(n+ 2) = Ya(n)− 1.

So we have,
Ya(n+ 2) = Ya(n)− 1

= π(n)− π
(n

2

)
+ δYa(n)− 1

= π(n+ 2)− 1− π
(
n+ 2

2

)
+ 1− 1

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = −1 in that case. This implies that (Ccl) is verified.

iik) n+ 1 compound, (n+ 2)/2 compound, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYa

(n) = 0 and Ya(n+ 2) = Ya(n).

So we have,
Ya(n+ 2) = Ya(n)

= π(n)− π
(n

2

)
+ δYa

(n)

= π(n+ 2)− π
(
n+ 2

2

)
+ δYa

(n+ 2)

since δYa
(n+ 2) = 0 in that case. This implies that (Ccl) is verified.
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6.1.4 Property 12 : invariant relation concerning Yc(n)

The objective is to demonstrate why the invariant relation concerning Yc(n) and that is :

Yc(n) =
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n)

is always verified.

i) recurrences’initializations :

n
n/2

is prime
(n+ 2)/2
is prime

n− 1
is prime

n+ 1
is prime

Yc(n)
⌊n

4

⌋
π(n) π(n/2) δYc(n)

14 x − x − 1 3 6 4 0
16 − − − x 1 4 6 4 −1
18 − − x x 2 4 7 4 1
20 − x x − 1 5 8 4 0
22 x − − x 1 5 8 5 −1
26 x − − − 2 6 9 6 −1
36 − x − x 4 9 11 7 −1
48 − − x − 6 12 15 9 0
50 − − − − 6 12 15 9 0
56 − x − − 6 14 16 9 −1
60 − x x x 8 15 17 10 0

It is easy to verify that for small integers, property 12 is well systematically verified.

ii) Let us demonstrate by recurrence that if (12) is true for n, it is true for n+ 2.

Let us make the hypothesis that property 12 is true for n,

Yc(n) =
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) (H)

Let us demonstrate it is true for n+ 2,

Yc(n+ 2) =
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2) (Ccl)

We find here another time the 11 cases identified for demonstrating property 11 ; sometimes, there are
two subcases, when n/2 is compound, according to the fact that n is an even’s double in which case⌊n+ 2

4

⌋
=
⌊n

4

⌋
or that n is an odd’s double

⌊n+ 2
4

⌋
=
⌊n

4

⌋
+ 1.

In the array below are provided δYc
(n)’s values according to the booleans that must be considered (in

first column, we indicate a number of line li that will be useful in the following ; an example of a small
integer is provided in penultimate column, to fix ideas ; the letter corresponding to the recurrence type
intervening (cf after the array) is provided in last column :
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n− 1
is prime

n+ 1
is prime

n/2
is prime

(n+ 2)/2
is prime

δ4k+2(n) δYc
(n) ex case

l1 x − x − x 0 14 a
l2 x − − x − 0 20 e
l3 x − − − x 0 54 i
l4 x − − − − 1 48 i
l5 − x x − x −1 22 b
l6 − x − x − −1 36 f
l7 − x − − x 0 66 j
l8 − x − − − −1 16 j
l9 − − x − x −1 26 c
l10 − − − x − −1 56 g
l11 − − − − x 0 50 k
l12 − − − − − −1 64 k
l13 x x − x − 0 60 d
l14 x x − − x 1 18 h
l15 x x − − − 0 108 h

iia) n+ 1 compound, (n+ 2)/2 compound, n/2 prime, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYc(n) = 0 and Yc(n+ 2) = Yc(n).

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n)

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n + 2) = −1 in that case (n + 2 corresponds than to one of the cases of lines l6, l8, l10 or l12

because n being an odd’s double, n+ 2 can’t be one). This implies that (Ccl) is verified.
iib) n+ 1 prime, (n+ 2)/2 compound, n/2 prime, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
, δYc

(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) + 1

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + 1 + π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc(n+ 2) = 0 in that case (n+ 2 corresponds then to one of the cases of lines l2, l13 or l15 because
n being an odd’s double, n+ 2 can’t be one). This implies that (Ccl) is verified.
iic) n+ 1 compound, (n+ 2)/2 compound, n/2 prime, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
, δYc

(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) + 1

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)
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since δYc
(n + 2) = −1 in that case (n + 2 corresponds then to one of the cases of lines l6, l8, l10 or l12

because n being an odd’s double, n+ 2 can’t be one). This implies that (Ccl) is verified.

iid) n+ 1 prime, (n+ 2)/2 prime, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYc

(n) = 0 and Yc(n+ 2) = Yc(n).

n is mandatory an even’s double.

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)

=
⌊n+ 2

4

⌋
− π(n+ 2) + 1 + π

(
n+ 2

2

)
− 1 + 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)

since δYc(n+ 2) = 0 in that case (n+ 2 corresponds then to the case of line l1). This implies that (Ccl) is
verified.

iie) n+ 1 compound, (n+ 2)/2 prime, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYc

(n) = 0 and Yc(n+ 2) = Yc(n).

n is mandatory an even’s double.

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
− 1 + 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n + 2) = −1 in that case (n + 2 corresponds then to one of the cases of lines l5 or l9). This

implies that (Ccl) is verified.

iif) n+ 1 prime, (n+ 2)/2 prime, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYc(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

n is mandatory an even’s double.

So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n) + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + 1 + π

(
n+ 2

2

)
− 1− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n+ 2) = 0 in that case (n+ 2 corresponds then to the case of line l1). This implies that (Ccl) is

verified.

iig) n+ 1 compound, (n+ 2)/2 prime, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
+ 1, δYc(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

n is mandatory an even’s double.
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So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n) + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
− 1− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n + 2) = −1 in that case (n + 2 corresponds then to one of the cases of lines l5 or l9). This

implies that (Ccl) is verified.

iih) n+ 1 prime, (n+ 2)/2 compound, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
.

iih1) n even’s double, δYc
(n) = 0 and Yc(n+ 2) = Yc(n).

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)

=
⌊n+ 2

4

⌋
− π(n+ 2) + 1 + π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)

since δYc(n+2) = 1 in that case (n+2 corresponds then to one of the cases of lines l3 or l14). This implies
that (Ccl) is verified.

iih2) n odd’s double, δYc(n) = 1 and Yc(n+ 2) = Yc(n)− 1.

So we have,
Yc(n+ 2) = Yc(n)− 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)− 1

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + 1 + π

(
n+ 2

2

)
+ 1− 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)

since δYc(n+ 2) = 0 in that case (n+ 2 corresponds then to one of the cases of lines l2, l4, l13 or l15). This
implies that (Ccl) is verified.

iii) n+ 1 compound, (n+ 2)/2 compound, n/2 compound, n− 1 prime

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
.

iii1) n even’s double, δYc
(n) = 0 and Yc(n+ 2) = Yc(n).

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n+2) = 0 in that case (n+2 corresponds then to one of the cases of lines l7 or l11). This implies

that (Ccl) is verified.

iii2) n odd’s double, δYc
(n) = 1 and Yc(n+ 2) = Yc(n)− 1.
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So we have,
Yc(n+ 2) = Yc(n)− 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n)− 1

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + π

(
n+ 2

2

)
+ 1− 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n + 2) = −1 in that case (n + 2 corresponds then to one of the cases of lines l6, l8, l10 or l12).

This implies that (Ccl) is verified.

iij) n+ 1 prime, (n+ 2)/2 compound, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n) + 1, π
(
n+ 2

2

)
= π

(n
2

)
.

iij1) n even’s double, δYc
(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + 1 + π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)

since δYc(n+2) = 1 in that case (n+2 corresponds then to one of the cases of lines l3 or l14). This implies
that (Ccl) is verified.

iij2) n odd’s double, δYc(n) = 0 and Yc(n+ 2) = Yc(n).

So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n)

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + 1 + π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc(n+ 2)

since δYc(n+ 2) = 0 in that case (n+ 2 corresponds then to one of the cases of lines l2, l4, l13 or l15). This
implies that (Ccl) is verified.

iik) n+ 1 compound, (n+ 2)/2 compound, n/2 compound, n− 1 compound

In that case, π(n+ 2) = π(n), π
(
n+ 2

2

)
= π

(n
2

)
.

iik1) n even’s double, δYc
(n) = −1 and Yc(n+ 2) = Yc(n) + 1.

So we have,
Yc(n+ 2) = Yc(n) + 1

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc

(n) + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
− 1 + 1

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n+2) = 0 in that case (n+2 corresponds then to one of the cases of lines l7 or l11). This implies

that (Ccl) is verified.

iik2) n odd compound’s double, δYc
(n) = 0 and Yc(n+ 2) = Yc(n)
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So we have,
Yc(n+ 2) = Yc(n)

=
⌊n

4

⌋
− π(n) + π

(n
2

)
+ δYc(n)

=
⌊n+ 2

4

⌋
− 1− π(n+ 2) + π

(
n+ 2

2

)
+ 0

=
⌊n+ 2

4

⌋
− π(n+ 2) + π

(
n+ 2

2

)
+ δYc

(n+ 2)

since δYc
(n+ 2) = −1 in that case (n+ 2 corresponds to cases in lines l6, l8, l10 or l12). This implies that

(Ccl) is verified.

6.2 Order relations between variables

6.2.1 Study of inequalities Zc(n) > Za(n), Za(n) > Ya(n) and Yc(n) > Zc(n)

From properties 9 and 10, we deduce that Zc(n)− Za(n) =
⌊n

4

⌋
− 2 π

(n
2

)
+ δZc−Za(n) with δZc−Za(n)

equal to 1, 2 or 3.

Zc(n) − Za(n) seems globally increasing with little variations. One observes that Zc(n) > Za(n) for
n > 240. For greater values, strict inequality will be always verified because

⌊n
4

⌋
is increased much more

often than 2 π
(n

2

)
.

From properties 9 and 11, we deduce that Za(n)− Ya(n) = 2 π
(n

2

)
− π(n) + δZa−Ya

(n) with δZa−Ya
(n)

equal to −3,−2,−1 or 0.

Za(n)−Ya(n) seems globally increasing with little variations. One observes that Za(n) > Ya(n) for n > 36.

From properties 10 and 12, we deduce that Yc(n)− Zc(n) = 2 π
(n

2

)
− π(n) + δYc−Zc

(n) with δYc−Zc
(n)

equal to −2,−1, 0 or 1.

Yc(n)− Zc(n) is an increasing function of n. One observes that Yc(n) > Zc(n) for n > 24.

6.2.2 Strict order between 4 variables Ya(n), Yc(n), Za(n) and Zc(n)

Variables Ya(n), Za(n), Zc(n) et Yc(n) are strictly ordered in the following way :

Ya(n) < Za(n) < Zc(n) < Yc(n)

for all n > 240.

A picture showing variables’gaps is provided below, that illustrates their intrication :

π(n)− π(n/2) π(n/2) n/4− π(n/2) n/4− π(n) + π(n/2)

Y a Za Zc Y c

Xa Xd

< < <

From properties 9, 10, 11 and 12, we deduce :
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• Zc(n)− Ya(n) =
⌊n

4

⌋
− π(n) + δZc−Ya

(n) with δZc−Ya
(n) equal to −1, 0, 1 or 2 ;

• Yc(n)− Za(n) =
⌊n

4

⌋
− π(n) + δYc−Za

(n) with δYc−Za
(n) equal to 0, 1, 2 or 3 ;

• Xd(n) − Xa(n) = Zc(n) − Ya(n) + δ2odd−compound(n) =
⌊n

4

⌋
− π(n) + δXd−Xa

(n) with δXd−Xa
(n)

equal to −1, 0, 1 or 2.

One can also observe by program that :

• Xc(n)−Xb(n) = 2π
(n

2

)
− π(n) + δXc−Xb

(n) with δXc−Xb
(n) equal to −2,−1, 0 or 1.

Also, one can deduce from equalities yet provided that :

• Xa(n) +Xb(n) = π(n)− π
(n

2

)
+ δXc−Xb

(n) with δXa+Xb
(n) very small.

The function
⌊n

4

⌋
−π(n) that appear in right members of three first equalities above is globally increasing

with little variations. It’s equal to 0 for n = 122.

Since
⌊n+ 2

4

⌋
=
⌊n

4

⌋
+1 when n is an even’s double (i.e. for one even number each two) while π(n+2) =

π(n) + 1 when n+ 1 is prime (far less often than for one even number each two), for all n greater than a
small value (i.e. n > 122), we will always have

⌊n
4

⌋
− π(n) > 0.

6.3 Study of inequality Xa(n) > 0

To be sure that Xa(n) would never be equal to 0, we should have to show that since a certain value of n,
the inequality

Xd(n) >
⌊n

4

⌋
− π(n) + 2

is always verified.

Indeed, this inequality, combined with the invariant Xd(n) − Xa(n) =
⌊n

4

⌋
− π(n) + δXd−Xa

(n), would
have as consequence that Xa(n) would be always strictly positive.

We observe that it seems that
Xd(n) >

⌊n
4

⌋
− π(n) + 2

for n > 30.

Intuitively, one understands what process is at work : the number of compound numbers becomes so big
comparatively to the number of prime numbers that each compound number has “many more chances”
to be the complementary to n of another compound number rather than a prime one. It is thus one can
observe Xd(n) becomes quickly greater than the sum Xb(n) +Xc(n), in which each term is greater than
Xa(n).

6.4 Subsidiary exercize

Let us propose as an exercize that we must match (with a bijection) numbers of two sets ; in the first set
containing k numbers, A are compound and k − A are prime while in the second set, containing also k
numbers, B numbers are compound while k − B are prime. If A 6 k/2 and B 6 k/2, the matching can
put in bijection two numbers that are not mandatory compound. But as soon as A > k/2 and B > k/2,
some matching must necessarily put in bijection a compound number from the first set with a compound
number of the second set. We can easily understand thanks to the drawing below that the number of
matchings associating bijectively two compound numbers is necessarily greater than A+B − k.
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A

B

6.5 Xa(n) constrained to be strictly positive

Among odd numbers that are between 3 and n/2, very quickly, more than a half are compound. On the
same manner, among odd numbers that are between n/2 and n − 3, very quickly, more than a half are
compound.

By this way, there are rather quickly both more than a half of numbers that can be an n’s decomposition
first range sommant that are compound and more than a half of numbers that can be an n’s decomposition
second range sommant that are compound too (i.e. Yc(n) >

⌊n− 2
8

⌋
and Zc(n) >

⌊n− 2
8

⌋
) as soon

as n > 244. Indeed, for n > 244,
⌊n

4

⌋
− π(n) + π

(n
2

)
>
⌊n− 2

8

⌋
and

⌊n
4

⌋
− π

(n
2

)
>
⌊n− 2

8

⌋
.

Xd(n) counting n’s decompositions of the form compound+ compound is then systematically greater than
Yc(n) + Zc(n) −

⌊n− 4
4

⌋
(cf subsidiary exercize of precedent section) and will remain greater than it

definitively, which ensures that Xa(n) will be always strictly positive, which proves binary Goldbach’s
conjecture.
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