Ups and downs (Denise Vella-Chemla, 12.5.2018)
We try to demonstrate Goldbach's conjecture. Let us define 4 variables :

$$
\begin{aligned}
& X_{a}(n)=\#\{p+q=n \text { such that } p \text { and } q \text { odd, } 3 \leqslant p \leqslant n / 2, p \text { and } q \text { prime }\} \\
& X_{b}(n)=\#\{p+q=n \text { such that } p \text { and } q \text { odd, } 3 \leqslant p \leqslant n / 2, p \text { compound and } q \text { prime }\} \\
& X_{c}(n)=\#\{p+q=n \text { such that } p \text { and } q \text { odd, } 3 \leqslant p \leqslant n / 2, p \text { prime and } q \text { compound }\} \\
& X_{d}(n)=\#\{p+q=n \text { such that } p \text { and } q \text { odd, } 3 \leqslant p \leqslant n / 2, p \text { and } q \text { compound }\}
\end{aligned}
$$

In the following, let us note $E(x)$ the integer part of x (i.e. $\lfloor x\rfloor$).
One will assume that $X_{a}(2 n)=0$ while $X_{a}(n)$ is not zero and try to end up at a contradiction.
One tries a first case, helping visually oneself with small drawings; different parts are numbered to "trace" them while passing from n 's drawing to $2 n$'s drawing.

Some elements must be specified :

- gray color is used to code compound numbers, white color is used to code prime numbers;
- rectangles down the drawing represent small sommants while rectangles up the drawing represent big sommants in decompositions;
- decompositions are "melted" : we exchange columns containing each an integer x in the line down the drawing and its complementary $n-x$ in the line up the drawing in such a way that every same type columns (i.e. containing decompositions of the form prime + prime, prime + compound, compound + prime and compound + compound) are juxtaposed to allow the counting by $X_{a}(n), X_{b}(n), X_{c}(n), X_{d}(n)$ variables by contiguity.
- it's important to have in mind that while passing from n to $2 n$, every number that intervenes in n 's decompositions (between 3 and $n-3$), that is in one of the two lines of numbers represented in figure 1, must be in the line down in the drawing of figure 2 (they are the small sommants of $2 n$ that are between 3 and $n{ }^{*}$.

Figure 1 : n 's decompositions

Figure 2: 2n's decompositions

On figure 2 above, we overline in red color the segments whose length is used to equal the total size of the figure that is known.

[^0]For figure 2, since we assumed as hypothesis that $X_{a}(2 n)=0$, we have :

$$
X_{b}(2 n)+X_{d}(2 n)+2 X_{a}(n)+X_{b}(n)+X_{c}(n)=\frac{2 n}{4}
$$

Explanation concerning the origin of the equality above : $X_{b}(2 n)+X_{d}(2 n)$ is the length of the red segment at the up right side of the figure while $2 X_{a}(n)+X_{b}(n)+X_{c}(n)$ is the length of the red segment at the down left side of the figure.

In figure 1, we have :

$$
X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\frac{n}{4}
$$

From those 2 equalities, we can deduce substracting the second one to the first :

$$
X_{b}(2 n)+X_{d}(2 n)+X_{a}(n)-X_{d}(n)=\frac{n}{4}
$$

1) Let us suppose $X_{d}(n)>X_{a}(n)$; then $X_{a}(n)-X_{d}(n)$ in negative from one side and $2 X_{d}(n)>X_{d}(n)+$ $X_{a}(n)$ from the other side.

But this leads to a contradiction since we obtain \dagger :

$$
X_{d}(n)+X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{a}(n)-X_{d}(n)=\frac{n}{4}
$$

while $X_{a}(n)+X_{b}(n)+X_{c}(n)+X_{d}(n)=\frac{n}{4}$ is figure 1's size that shouldn't be equal to $\frac{n}{4}$ if we add a negative number to it $\left(X_{a}(n)-X_{d}(n)\right)$.
2) Let us suppose now that $X_{d}(n) \leqslant X_{a}(n)$.

Contradiction comes from the inequality :

$$
\begin{equation*}
X_{d}(n)-X_{a}(n)=E(n / 4)-\pi(n)+\delta(n) \tag{1}
\end{equation*}
$$

$X_{d}(n)-X_{a}(n)$ is strictly positive for $n \geqslant 122 . \delta(n)$ is a negligible variable that equals 0,1 or 2.
For $n=122, X_{d}(n)=X_{a}(n)$.
Above this number, since $E(n / 4)$ regularly grows each 4 integers, $\pi(n)$ is only growing at each prime, and so the difference $X_{d}(n)-X_{a}(n)$ is always growing more and more.

We proved by recurrence in https://hal.archives-ouvertes.fr/hal-01109052 properties from which $X_{d}(n)-$ $X_{a}(n)=E(n / 4)-\pi(n)+\delta(n)$ can be obtained.
Alain Connes gave a very simple justification for $X_{d}(n)-X_{a}(n)=E(n / 4)-\pi(n)+\delta(n)$ that we copy below :
[Indeed, for n fixed, let us call J the set of odd numbers between 1 and $n / 2$ and let us consider the two subsets of $J: P=\{j \in J \mid j$ prime $\}, Q=\{j \in J \mid n-j$ prime $\}$.
Then I claim that (1) comes from the very general fact on any subset and intersection and union cardinalities :

$$
\begin{equation*}
\#(P \cup Q)+\#(P \cap Q)=\#(P)+\#(Q) \tag{2}
\end{equation*}
$$

Here (neglecting limit cases that contribute to $\delta(n)$), we see that
(a) $\#(P \cap Q)$ corresponds to $X_{a}(n)$.
(b) $\#(P \cup Q)$ corresponds to $E(n / 4)-X_{d}(n)$.
(c) $\#(P)+\#(Q)$ corresponds to $\pi(n)$.

So we have a very simple proof of (1) as a consequence of (2).]

[^0]: *. We should note $n-3$ in place of n but we forget limit cases here.

