
Ups and downs (Denise Vella-Chemla, 12.5.2018)

We try to demonstrate Goldbach’s conjecture. Let us define 4 variables :

Xa(n) = #{p+ q = n such that p and q odd, 3 6 p 6 n/2, p and q prime}

Xb(n) = #{p+ q = n such that p and q odd, 3 6 p 6 n/2, p compound and q prime}

Xc(n) = #{p+ q = n such that p and q odd, 3 6 p 6 n/2, p prime and q compound}

Xd(n) = #{p+ q = n such that p and q odd, 3 6 p 6 n/2, p and q compound}

In the following, let us note E(x) the integer part of x (i.e. bxc).

One will assume that Xa(2n) = 0 while Xa(n) is not zero and try to end up at a contradiction.

One tries a first case, helping visually oneself with small drawings ; different parts are numbered to “trace”
them while passing from n’s drawing to 2n’s drawing.

Some elements must be specified :
- gray color is used to code compound numbers, white color is used to code prime numbers ;
- rectangles down the drawing represent small sommants while rectangles up the drawing represent
big sommants in decompositions ;

- decompositions are “melted” : we exchange columns containing each an integer x in the line
down the drawing and its complementary n − x in the line up the drawing in such a way that
every same type columns (i.e. containing decompositions of the form prime + prime, prime +
compound, compound + prime and compound + compound) are juxtaposed to allow the counting
by Xa(n), Xb(n), Xc(n), Xd(n) variables by contiguity.

- it’s important to have in mind that while passing from n to 2n, every number that intervenes in
n’s decompositions (between 3 and n − 3), that is in one of the two lines of numbers represented
in figure 1, must be in the line down in the drawing of figure 2 (they are the small sommants of 2n
that are between 3 and n ∗).

Xa(n)Xb(n)Xc(n) Xd(n)

1 2 3 4
5 6 7 8

Figure 1 : n’s decompositions

Xc(2n) Xd(2n) Xb(2n)

composed of 3, 4, 5, 8 composed of 1, 2, 6, 7

2Xa(n) +Xb(n) +Xc(n) 2Xd(n) +Xb(n) +Xc(n)

Figure 2 : 2n’s decompositions

On figure 2 above, we overline in red color the segments whose length is used to equal the total size of the
figure that is known.

∗. We should note n− 3 in place of n but we forget limit cases here.
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For figure 2, since we assumed as hypothesis that Xa(2n) = 0, we have :

Xb(2n) +Xd(2n) + 2Xa(n) +Xb(n) +Xc(n) = 2n
4

Explanation concerning the origin of the equality above : Xb(2n)+Xd(2n) is the length of the red segment
at the up right side of the figure while 2Xa(n) + Xb(n) + Xc(n) is the length of the red segment at the
down left side of the figure.

In figure 1, we have :
Xa(n) +Xb(n) +Xc(n) +Xd(n) = n

4

From those 2 equalities, we can deduce substracting the second one to the first :

Xb(2n) +Xd(2n) +Xa(n)−Xd(n) = n

4

1) Let us suppose Xd(n) > Xa(n) ; then Xa(n)−Xd(n) in negative from one side and 2Xd(n) > Xd(n) +
Xa(n) from the other side.

But this leads to a contradiction since we obtain † :

Xd(n) +Xa(n) +Xb(n) +Xc(n) +Xa(n)−Xd(n) = n

4

while Xa(n) + Xb(n) + Xc(n) + Xd(n) = n

4 is figure 1’s size that shouldn’t be equal to n

4 if we add a
negative number to it (Xa(n)−Xd(n)).

2) Let us suppose now that Xd(n) 6 Xa(n).

Contradiction comes from the inequality :

Xd(n)−Xa(n) = E(n/4)− π(n) + δ(n) (1)

Xd(n)−Xa(n) is strictly positive for n > 122. δ(n) is a negligible variable that equals 0, 1 or 2.

For n = 122, Xd(n) = Xa(n).

Above this number, since E(n/4) regularly grows each 4 integers, π(n) is only growing at each prime, and
so the difference Xd(n)−Xa(n) is always growing more and more.

We proved by recurrence in https://hal.archives-ouvertes.fr/hal-01109052 properties from which Xd(n)−
Xa(n) = E(n/4)− π(n) + δ(n) can be obtained.

Alain Connes gave a very simple justification for Xd(n) − Xa(n) = E(n/4) − π(n) + δ(n) that we copy
below :

[Indeed, for n fixed, let us call J the set of odd numbers between 1 and n/2 and let us consider the two
subsets of J : P = {j ∈ J | j prime}, Q = {j ∈ J | n− j prime}.

Then I claim that (1) comes from the very general fact on any subset and intersection and union cardi-
nalities :

#(P ∪Q) + #(P ∩Q) = #(P ) + #(Q) (2)

Here (neglecting limit cases that contribute to δ(n)), we see that
(a) #(P ∩Q) corresponds to Xa(n).
(b) #(P ∪Q) corresponds to E(n/4)−Xd(n).
(c) #(P ) + #(Q) corresponds to π(n).

So we have a very simple proof of (1) as a consequence of (2).]

†. To understand how we obtain this equality, look at the two expressions associated to the red segment at the up right
side of the figure 2, one at the top and one at the bottom of the figure.
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