On note d’une autre manière les liens entre les sommes de deux impairs.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3 + 3</td>
</tr>
<tr>
<td>8</td>
<td>3 + 5</td>
</tr>
<tr>
<td>10</td>
<td>3 + 7 5 + 5</td>
</tr>
<tr>
<td>12</td>
<td>3 + 9 5 + 7</td>
</tr>
<tr>
<td>14</td>
<td>3 + 11 5 + 9 7 + 7</td>
</tr>
<tr>
<td>16</td>
<td>3 + 13 5 + 11 7 + 9</td>
</tr>
<tr>
<td>18</td>
<td>3 + 15 5 + 13 7 + 11</td>
</tr>
<tr>
<td>20</td>
<td>3 + 17 5 + 15 7 + 13</td>
</tr>
<tr>
<td>22</td>
<td>3 + 19 5 + 17 7 + 15 11 + 11</td>
</tr>
<tr>
<td>24</td>
<td>3 + 21 5 + 19 7 + 17 11 + 13</td>
</tr>
<tr>
<td>26</td>
<td>3 + 23 5 + 21 7 + 19 11 + 15 13 + 13</td>
</tr>
</tbody>
</table>

On compte les décompositions en les regroupant selon leur plus grand sommant (le second de la décomposition). Par exemple, parmi les décompositions des nombres pairs jusqu’à 18, on voit dans la ligne de 18 qu’une seule décomposition a 3 comme second sommant (3+3), 2 décompositions ont 5 comme second sommant (3+5 et 5+5), 3 décompositions ont 7 comme second sommant (3+7, 5+7 et 7+7), 3 décompositions ont 9 comme second sommant (3+9, 5+9 et 7+9), 3 décompositions ont 11 comme second sommant (3+11, 5+11 et 7+11), 2 décompositions ont 13 comme second sommant (3+13 et 5+13), et enfin, une seule décomposition a 15 comme second sommant (3+15).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1 1</td>
</tr>
<tr>
<td>10</td>
<td>1 2 1</td>
</tr>
<tr>
<td>12</td>
<td>1 2 2 1</td>
</tr>
<tr>
<td>14</td>
<td>1 2 3 2 1</td>
</tr>
<tr>
<td>16</td>
<td>1 2 3 3 2 1</td>
</tr>
<tr>
<td>18</td>
<td>1 2 3 3 3 2 1</td>
</tr>
<tr>
<td>20</td>
<td>1 2 3 3 3 3 3 2 1</td>
</tr>
<tr>
<td>22</td>
<td>1 2 3 3 4 3 3 3 3 2 1</td>
</tr>
<tr>
<td>24</td>
<td>1 2 3 3 4 4 3 3 3 2 1</td>
</tr>
<tr>
<td>26</td>
<td>1 2 3 3 4 5 4 3 3 3 2 1</td>
</tr>
</tbody>
</table>

Notons l’ensemble $G(n) = \{a + b tels que a et b sont impairs, a est premier et 3 \leq a \leq n/2 et 6 \leq a + b \leq n\}$. Appelons f_n la bijection de $G(n)$ dans $G(n)$ telle que $f_n(a + b_1) = a + b_2$ si et seulement si $b_1 + b_2 = n$. La bijection f_{22} par exemple associe 3 + 7 à 3 + 15 ou 7 + 9 à 7 + 13. f_{22} a comme points fixes 3 + 11, 5 + 11, 7 + 11 et 11 + 11.

Plus généralement, le nombre de points fixes de f_n est égal à $\pi(n/2)$ si n est un double d’impair et à 0 sinon.

On note la palindromie des comptages horizontaux des décompositions.